Cost Estimating of Space Science Missions

April 16, 2013

Robert E. Bitten, Eric M. Mahr and Robert C. Kellogg
NASA Program Division
Civil and Commercial Operations

Prepared for:
NASA Headquarters
300 East Street, SW
Washington, DC 20024

Authorized by: Civil and Commercial Operations

Approved for public release.
Cost Estimating of Space Science Missions

April 16, 2013

Robert E. Bitten, Eric M. Mahr and Robert C. Kellogg
NASA Program Division
Civil and Commercial Operations

Prepared for:
NASA Headquarters
300 East Street, SW
Washington, DC 20024

Authorized by: Civil and Commercial Operations

Approved for public release.
Cost Estimating of Space Science Missions

April 16, 2013

Robert E. Bitten, Eric M. Mahr and Robert C. Kellogg
NASA Program Division
Civil and Commercial Operations

Prepared for:
NASA Headquarters
300 East Street, SW
Washington, DC 20024

Authorized by: Civil and Commercial Operations

Approved for public release.
Cost Estimating of Space Science Missions

Approved by:

Matthew J. Hart, Principal Director
Advanced Studies and Analysis
Directorate
NASA Programs Division
Civil and Commercial Operations

All trademarks, service marks, and trade names are the property of their respective owners.

© The Aerospace Corporation, 2013.
Cost Estimating of Space Science Missions

Presentation to the NASA Advisory Council (NAC) Astrophysics Subcommittee

The Aerospace Corporation

16 April 2013
Agenda

• Background

• Cost Estimating Basics

• Probabilistic Cost/Schedule Estimating

• CATE Process

• Summary
Cost Evolution Throughout A Project’s Lifecycle

Goal of cost estimating is to forecast the final actual cost of system
An Example of Concept Growth: Substantial Differences Exist between Initial Concept and Final Implemented Configuration

<table>
<thead>
<tr>
<th>Programmatic</th>
<th>STEREO SDT*</th>
<th>STEREO Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule (months)</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>Taurus</td>
<td>Delta II</td>
</tr>
</tbody>
</table>

Technical

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite (wet)</td>
<td>211</td>
<td>630</td>
</tr>
<tr>
<td>Spacecraft (dry)</td>
<td>134</td>
<td>421</td>
</tr>
<tr>
<td>Payload</td>
<td>69</td>
<td>149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power (W)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite (Orbit Average)</td>
<td>152</td>
<td>503</td>
</tr>
<tr>
<td>Payload (Orbit Average)</td>
<td>58</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transponder Power (W)</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Downlink Data Rate (kbps)</td>
<td>150</td>
<td>720</td>
</tr>
<tr>
<td>Data Storage (Gb)</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

* Science Definition Team (SDT)

Reference: “An Assessment Of The Inherent Optimism In Early Conceptual Designs And Its Effect On Cost And Schedule Growth”
Effect of Design Changes on Complexity, Cost & Schedule

- **System Cost as Function of Complexity**
 - $y = 11.523e^{0.7802x}$
 - $R^2 = 0.8832$

- **Schedule as Function of Complexity**
 - $y = 24.22e^{1.6479x}$
 - $R^2 = 0.6889$

Complexity of System Increased Along with Development Cost and Schedule

Note: Development cost does not include launch vehicle cost, or mission operations and data analysis (MO&DA).

Reference: “An Assessment Of The Inherent Optimism In Early Conceptual Designs And Its Effect On Cost And Schedule Growth”
Cost & Schedule from 20 Missions Show Significant Increase from Baseline Established at PDR

Over Half of Uncertainty for Mass & Power is Retired by PDR while 2/3rds of Cost & Schedule Uncertainty Remain

Payload Mass and Cost Increase from 20 Missions Significantly Greater than Spacecraft Mass & Cost Increase

Data Indicates Payload Resource has Greater Uncertainty than Spacecraft

Agenda

• Background

• Cost Estimating Basics

• Probabilistic Cost/Schedule Estimating

• CATE Process

• Summary

• A cost estimating relationship (CER) is a mathematical equation that uses regression techniques to establish a relationship between independent variables that are representative of the design, and cost as the dependent variable.

• CERs can be applied at the system level (e.g. spacecraft, instrument), subsystem level (e.g. attitude determination & control, optics) or component level (e.g., star tracker, CCD).

• All cost models, in their basic form, have some underlying CER defined.

CERs are based on historical data.
Cost Estimation Methodology Examples

<table>
<thead>
<tr>
<th>Model</th>
<th>Developer</th>
<th>Spacecraft Estimating</th>
<th>Instrument Estimating</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Instrument Cost Model (NICM)</td>
<td>JPL</td>
<td>N/A</td>
<td>X</td>
</tr>
<tr>
<td>Multivariable Instrument Cost Model (MICM)</td>
<td>GSFC</td>
<td>N/A</td>
<td>X</td>
</tr>
<tr>
<td>Space Based Optical Sensor Cost Model (SOSCM)</td>
<td>Aerospace</td>
<td>N/A</td>
<td>Optical Only</td>
</tr>
<tr>
<td>NASA/Air Force Cost Model (NAFCOM)</td>
<td>SAIC</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PRICE H</td>
<td>PRICE Systems</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SEER-H</td>
<td>Galorath</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Small Satellite Cost Model (SSCM)</td>
<td>Aerospace</td>
<td>Small Spacecraft</td>
<td>N/A</td>
</tr>
<tr>
<td>Adjusted Analogy</td>
<td>Aerospace</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aerospace Method</td>
<td>Aerospace</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Cost Database Characteristics

<table>
<thead>
<tr>
<th>Database</th>
<th>Developer</th>
<th>Number of Spacecraft</th>
<th>Number of Instruments</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Analysis Data Requirement (CADRe)</td>
<td>NASA HQ</td>
<td>~100</td>
<td>From ~100 missions</td>
<td>NASA Cost Community</td>
</tr>
<tr>
<td>NASA/Air Force Cost Model (NAFCOM)</td>
<td>SAIC</td>
<td>>100</td>
<td>>350</td>
<td>NASA-Air Force Cost Community</td>
</tr>
<tr>
<td>NASA Instrument Cost Model (NICM)</td>
<td>JPL</td>
<td>N/A</td>
<td>160</td>
<td>NASA Cost Community</td>
</tr>
<tr>
<td>Small Satellite Database (SSDB)</td>
<td>Aerospace</td>
<td>~140</td>
<td>N/A</td>
<td>Aerospace Only</td>
</tr>
<tr>
<td>Aerospace Space-based Instrument Database</td>
<td>Aerospace</td>
<td>N/A</td>
<td>~600</td>
<td>Aerospace Only</td>
</tr>
</tbody>
</table>
Agenda

• Background
• Cost Estimating Basics
• Probabilistic Cost/Schedule Estimating
• CATE Process
• Summary
NPD 7120.5E Requires a New Way to Budget

Historically representative data

Percent Likelihood

Total Mission Cost ($M)

Life Cycle Cost Estimate
At KDP C = Agency Baseline Commitment

“New Way” Mission Budget

“New Way” Project Funding

“Old Way” Project Funding & Mission Budget

Note: UFE = Unallocated Future Expense as stated in NPD 7120.5E

Budgeting at the 70th Percentile should reduce historical overruns
Generic Cost/Schedule Risk Process Overview – Methodology Independent

Initial Cost Estimate Distributed over Baseline Schedule

- Project Management
- Systems Engineering
- Safety and Mission Assurance
- Science/Technology
- Payload(s)
- Flight System / Spacecraft
- Launch Vehicle/Services
- Mission Operations System (MOS)
- Ground Data System (GDS)
- System Integration, Assembly, Test & Check Out
- Education & Public Outreach

Develop Distributions for WBS Elements/Tasks

- Phase A
- Phase B
- Phase C
- Phase D
- Phase E

Combine WBS Element/Task Distributions into Total Project Cost/Schedule Distribution

Example Joint Cost/Schedule Distribution

Computed analytically or by using Monte Carlo simulation

Estimated Cost (FY08$M)

Cumulative Probability

$200 $250 $300 $350 $400 $450 $500 $550 $600
Agenda

• Background

• Cost Estimating Basics

• Probabilistic Cost/Schedule Estimating

• CATE Process

• Summary
Cost and Technical Evaluation (CATE) Background

• **CATE Process developed by NRC for Astro2010 Decadal Survey**
 – Previous Decadal Surveys significantly underestimated mission costs
 – US Congress required NRC to use an Independent CATE Contractor
 – Need to provide level treatment of projects of varying maturity
 – Realistic CATE estimates needed for future budget analysis & decisions
 • CATE estimates needed to reflect historical project growth
 – Not just analyze the specific proposed point design

• **CATE process is the same as NASA ICE range of estimates for KDP-B**
 – Begins with typical Independent Cost Estimate, ICE
 – Adds three types of cost threats, where appropriate:
 • Schedule, design (mass & power growth) and launch vehicle
Primary Tenets of Aerospace Cost Estimating

• **Use Multiple Methods**
 – *Ensures that no one model/database biases the estimate*
 • Industry Standard Methods
 • Aerospace Developed Models

• **Use Analogy Based Estimating**
 – *Ties cost to systems that have been built with known cost*
 – *Allows contractor specific performance to be addressed*
 – *Forces estimator and project to look at cost and complexity of new concepts with respect to previously built hardware*

• **Use Both System Level and Lower Level Approaches**
 – *Ensures that lower level approaches do not omit elements or under/overestimate overall cost relative to system level complexity*
CATE Cost Estimating Approach Overview

Estimate Instruments & Spacecraft
Multiple analogies and models

Estimate Other Elements
Based on historical data

Estimate Cost Reserves
Based on probabilistic cost risk analysis

Estimate Mass and Power Contingency Threat
Re-run estimate with Aerospace contingencies

Estimate Schedule Threat
Based on ISE results and project burn rates

Integrate Results & Level Across Concepts
Cross-check with CoBRA
Agenda

• Background

• Cost Estimating Basics

• Probabilistic Cost/Schedule Estimating

• CATE Process

• Summary
Summary

• Cost estimating methods attempt to predict cost of final configuration

• Cost estimating methods are based on actual costs of historical items

• Early project concepts are typically optimistic in complexity, schedule, and cost

• CATE process was developed to "level out" some of the initial optimism and provide a common process for all assessments
Back-up
Recent Aerospace Publications – Cost & Schedule Growth

- **Cost & Schedule Growth Research**
Recent Aerospace Publications - Methodology

- **Cost Analysis Methodology**
 - “An Assessment of Different Approaches for Conducting Joint Cost and Schedule Confidence Level Analyses” Robert Bitten, Robert Kellogg, Debra Emmons, NASA Cost Symposium, April 2009

- **Schedule Analysis Methodology**

- **Complexity Based Risk Assessment (CoBRA)**