Hardware Summary

• Available Flight Hardware
 > Two, 2.4m, two-mirror telescopes
 > One completed with full thermal hardware
 > Electronics & Actuators have been harvested but can be rebuilt to existing drawings
 > Two outer barrel assemblies
 > One fully completed with thermal blankets and butterfly doors
 > One hardware radiator/electronics bays
 > Aluminum structures for radiator and electronic attachment
 > Acted as a “spacer” between the spacecraft and the outer barrel assembly
• All ground support equipment for alignment, integration, and test
• Miscellaneous parts for a third system

Robust traceability has been retained for all flight hardware
Hardware

- **Outer Barrel Assembly (OBA)**
 - 2 Assemblies Available

- **Telescope Subsystem (TSS)**
 - 2 Assemblies Available

- **Payload Radiator Subsystem (PLRSS)**
 - 1 Assembly Available
2.4m Space Telescope Form

- Optical Form: 2 Mirror, f/8
- Aperture: 2.37m
- Unvignetted Field of View: ~ 1.8° Dia.
- Wavefront Quality: <60 nm rms
- Secondary Mirror Assembly Control –
 - 6 DOF plus fine focus
 - 6 DOF Actuators are at the base of the secondary struts
 - Focus actuator is behind the SMA
- Mass: 840kg
- Back Focus: 1.2m behind PM Vertex

~ 5.8 m³ Volume Available for Instruments, Sensors, Electronics
Outer Barrel Assembly

- Thermal Protective Enclosure *including Two Actuated Thermal Butterfly Doors*
- Composite Structure
- Full MLI blanket set also completed
- Mass: 280kg (without blankets)
- Mounting: Requires Interim Structure connected to Spacecraft Interface
System Obstruction

Seven coating artifacts correctable by recoating

On Axis Pupil
17% Obstructed
Strut Mean Width: 41mm
Strut Obstruction Length: 881mm
Mirror Quality and Coating

Primary Mirror (~40kg/m²)

- **Clear Aperture:** 2.37m OD, 0.7m ID
- **Surface Quality:** 12nm RMS
- **Form:** Concave, F/1.2
- **Mirror Coating:** Protected Silver

![Primary Mirror Diagram]

Secondary Mirror

- **Clear Aperture:** 0.53m OD, 0.02m ID
- **Surface Quality:** 16nm rms
- **Form:** Convex
- **Mirror Coating:** Protected Silver

![Secondary Mirror Diagram]
Telescope Thermal Configuration

- Cold biased design - Outer Barrel Assembly (OBA) serves as a passively cooled radiative enclosure to attenuate environment changes.
- Heaters control telescope: Aft Metering Structure (AMS), Forward Metering Structure (FMS), Secondary Mirror Assembly (SMA), Secondary Mirror Support Tubes (SMST)
 - Minimize radial and diametrical gradients near PMA
 - Independent prime, redundant, and survival heaters
 - Control telemetry for each heater zone
 - Prime & redundant for computer-based control
 - Autonomous hybrid heater controllers (HHC) for survival
 - OBA heater control located on door mechanism only
 - MLI on FMS, SMA, OBA OD, SMST surfaces away from PM

<table>
<thead>
<tr>
<th>Heater Location</th>
<th># of Zones</th>
<th>Capacity (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>24</td>
<td>102</td>
</tr>
<tr>
<td>FMS</td>
<td>21</td>
<td>100</td>
</tr>
<tr>
<td>SMST</td>
<td>12</td>
<td>106</td>
</tr>
<tr>
<td>SMA</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.
Hybrid Laminates with low CTE, low CME, and high modulus *(patented)*

- 0 CTE (0.0 ± 0.1 µin/in°F) in all inplane directions

Cyanate Siloxane Resin with low moisture uptake *(ITT/Hexcel development)*

Hygro strain < 15 µin/in

Invar Fittings where required for stability

- CTE: < 0.4 µin/in°F
- Temporal Stability (Invar growth): < 2 ± 1 µin/in/yr

Neat Resin Equilibrium at 50%RH

<table>
<thead>
<tr>
<th>% Moisture</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy</td>
<td>√t1</td>
</tr>
<tr>
<td>Cyanate Ester</td>
<td>√t1*14</td>
</tr>
<tr>
<td>Cyanate Siloxane</td>
<td>√t1*14</td>
</tr>
</tbody>
</table>
Thermal Operating Considerations

- Telescope system was designed to operate around 293K (Room Temperature)
 - Does not require requalification for warm launch
- Various material considerations influence using the system at colder temperatures
 - **Mirror Materials**
 - Corning ULE™ is optimized for room temperature applications
 - ULE™ has been tested at 20K with degraded CTE characteristics
 - **Structures**
 - Laminate also optimized for room temperature use
 - CTE characteristics degrade slowly so some level of off-nominal conditions would be acceptable
 - **Bonding Materials**
 - GE RTV-566 used to attach mirrors to mounts would need qualification at off-nominal temperatures
 - **Mechanisms**
 - Precision mechanisms would be a concern

<table>
<thead>
<tr>
<th>OPERATING TEMPERATURE (K)</th>
<th>LOW RISK</th>
<th>MINOR RISK</th>
<th>MAJOR REWORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Minor Mat’l Testing</td>
<td>Refigure Mirrors/Qual Composites & Adhesives/Modify some mechanisms</td>
<td>Major redesign of system</td>
</tr>
<tr>
<td>275</td>
<td>250</td>
<td>225</td>
<td>150</td>
</tr>
</tbody>
</table>

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.
Summary

- Telescope system designed for room temperature operation
 - Off optimal thermal configuration is possible with some level of analysis and retest
 - We do not recommend operating temperatures below 200K due to numerous material, electronic, and optical considerations
- Some minor rework on the telescope is very low risk
 - Telescopes were designed to be taken apart and refurbished
 - Ion figuring and recoating would be considered very low risk for example
- Instrument section is the most doubtful of the configuration
 - Aluminum and heavy
 - Designed for a specific instrument accommodation
 - Not a cost driver to replace with a better form factor
- Outer Barrel Assembly is probably shorter than desired for NASA mission
 - Extension and repositioning is low cost and low risk
- Point of Contact
 Dr. Jennifer Dooley – JPL
 Jennifer.A.Dooley@jpl.nasa.gov