Visiting Experienced Scientists at NASA HQ

Looking for a few good astrophysicists....

- Seeking one or more experienced scientists
 - to take leave from their U.S. home institution
 - for a 2-year visiting position (can extend up to 6 years)
 - to work in Astrophysics at NASA Headquarters
- Duties include
 - Management of the Astrophysics grants programs;
 - Planning, development, and management of NASA missions;
 - Strategic planning for the future of NASA astrophysics.
- Requires Ph.D. or equivalent, relevant research experience, familiarity with NASA research award programs and/or missions, and the ability to communicate effectively.
- For additional info, talk with any of the Astrophysics HQ staff.

Apply by January 31, 2015

http://jobregister.aas.org/job_view?JobID=46612
Why Astrophysics?

Astrophysics is humankind’s scientific endeavor to understand the universe and our place in it.

1. How did our universe begin and evolve?
2. How did galaxies, stars, and planets come to be?
3. Are We Alone?

These national strategic drivers are enduring
Recent NASA Astrophysics HQ Announcements

- Hubble Team Unveils Most Colorful View of Universe Captured by Space Telescope (June 3)
- New Spectrograph Testing Begins on SOFIA Observatory (June 3)
- NASA Hubble to Begin Search Beyond Pluto for a New Horizons Mission Target (June 16)
- Swiftly Moving Gas Streamer Eclipses Supermassive Black Hole (June 19)
- Hubble Finds Dwarf Galaxies Formed More Than Their Fair Share of Universe's Stars (June 19)
- Testing Completed on NASA's James Webb Space Telescope Backplane (July 8)
- Hubble Spots Spiral Bridge of Young Stars Linking Two Ancient Galaxies (July 10)
- Leading Space Experts to Discuss the Search for Life Beyond Earth (July 10)
- NASA's Chandra X-ray Observatory Celebrates 15th Anniversary (July 22)
- Hubble Finds Three Surprisingly Dry Exoplanets (July 24)
- NASA's Fermi Space Telescope Reveals New Source of Gamma Rays (July 31)
- Hubble Shows Farthest Lensing Galaxy Yields Clues to Early Universe (July 31)
- NASA's Hubble Finds Supernova Star System Linked to Potential “Zombie Star” (August 6)
- NASA's NuSTAR Sees Rare Blurring of Black Hole Light (August 12)
- NASA's Chandra Observatory Searches for Trigger of Nearby Supernova (August 14)
- NASA's RXTE Satellite Decodes the Rhythm of an Unusual Black Hole (August 18)
- NASA Telescopes Uncover Early Construction of Giant Galaxy (August 27)
- NASA's Spitzer Telescope Witnesses Asteroid Smashup (August 28)
- Hubble Finds Supernova Companion Star After Two Decades of Searching (September 9)
- NASA's Chandra Finds Planet that Makes Star Act Deceptively Old (September 16)
- Hubble Helps Find Smallest Known Galaxy Containing a Supermassive Black Hole (September 17)
- NASA Telescopes Find Clear Skies and Water Vapor on Exoplanet (September 24)
- NuSTAR Telescope Discovers Shockingly Bright Dead Star (October 8)
- Hubble Maps Temperature and Water Vapor on Extreme Exoplanet (October 9)
- Hubble Finds Potential Jupiter Belt Targets for New Horizons (October 15)
- Hubble Finds Extremely Distant Galaxy Through Cosmic Magnifying Glass (October 16)
- Close Encounters: Comet Siding Spring Seen Next to Mars (October 23)
- NASA’s Chandra Observatory Identifies Impact of Cosmic Chaos on Star Birth (October 27)
- NASA Rocket Experiment Finds the Universe Brighter Than We Thought (November 6)
- NASA Awards NASA Balloon Operations Contract (November 13)
- NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission (December 18)
http://science.nasa.gov/astrophysics/documents
Big Picture

- The FY15 appropriations provides funding for NASA astrophysics to continue its programs, missions, and projects as planned
 - The total funding (Astrophysics including JWST) is $1.33B, same as FY14
 - Fully funds JWST to remain on plan for an October 2018 launch
 - Funds continued pre-formulation and technology work leading toward WFIRST
 - Restores SOFIA to the budget with a 17% reduction from FY14
 - Provides funding for SMD’s education programs

- The operating missions continue to generate important and compelling science results, and new missions are under development for the future
 - Chandra, Fermi, Hubble, Kepler/K2, NuSTAR, Spitzer, Suzaku, Swift, XMM-Newton continued following the 2014 Senior Review
 - SOFIA is in prime operations as of May 2014
 - New Explorers being selected (SMEX in 2015, MIDEX in 2017), WFIRST being studied, NASA joining ESA’s Athena and ESA’s L3 gravitational wave observatory

- Update to the Astrophysics Implementation Plan has been released

- Progress being made against recommendations of the 2010 Decadal Survey
 - NRC Mid Decade Review (with NSF, DOE) to begin in early 2015
 - NASA initiating concepts studies for 2020 Decadal Survey
FY15 Appropriation

- Provides $77M more than the President’s Budget Request for FY15
- Supports the commitment to an October 2018 launch date for JWST
- Includes $50M for continued preformulation of WFIRST, an increase of $36M over the Administration request and comparable to FY14
- Includes $70M for continued SOFIA operations, a reduction of $14M (17%) from FY14
 - Directs NASA to (a) seek partners to restore SOFIA to its full level, and (b) not terminate missions without a Senior Review
- Includes $98M for Hubble operations, the same as FY14
- Includes $38M for scientific ballooning, an increase of $5M (15%) from FY14
- Includes $42M for Education SMD-wide as a separate budget line (so E/PO is no longer budgeted as 1% of every mission)
- Does not specify the distribution of funding for the rest of Astrophysics, but the funding is adequate for Astrophysics to execute its program as planned in FY15.
 - Includes support as planned in FY15 for missions under development, operating missions, SMEX AO, R&A, etc.
 - Final budget numbers available when NASA operating plan approved
JWST
James Webb Space Telescope

2014 Accomplishments
- Highly successful second cryovacuum test of ISIM
- Deployment testing of full-scale engineering unit sunshield
- Spacecraft manufacturing initiated
- Telescope Pathfinder completed
- Telescope Flight Backplane completed

Large Infrared Space Observatory
Top priority of 2000 Decadal Survey

Science themes: First Light; Assembly of Galaxies; Birth of Stars and Planetary Systems; Planetary Systems and the Origins of Life

Mission: 6.5m deployable, segmented telescope at L2, passively cooled to <50K behind a large, deployable sunshield

Instruments: Near IR Camera, Near IR Spectrograph, Mid IR Instrument, Near IR Imager and Slitless Spectrograph

Operations: 2018 launch for a 5-year prime mission

Partners: ESA, CSA

2015 Plans
- Complete Instrument hardware replacements, and test ISIM for the final time before integration into observatory
- Conducts tests at JSC in preparation for 2016 full telescope and instrument test
- Complete MIRI cryocooler
- Start Assembly of the Primary mirror
JWST remains on track for an October 2018 launch within its replan budget guidelines
Hubble Space Telescope 25th Anniversary

Sample of Events & Programs:

• Webcast event at National Air & Space Museum April 24
• Coordinated events worldwide April 24
• Family Day at Udvar-Hazy April 25
• Hubble 2020 STScI symposium
• Exhibits at museums around the world
• Exhibits at multiple airports
• Nationwide University lecture series
• Education programs in all 50 states
• SXSW exhibit (and other large events)
• Comprehensive traditional & social media outreach plans
• ‘Ode to Hubble’ video contest
• Planetaria clips
• Re-release of IMAX ‘Hubble 3D’

Join the celebration: #Hubble25
Plan for WFIRST/AFTA Preformulation
Widefield Infrared Survey Telescope using
Astrophysics Focused Telescope Assets

WFIRST/AFTA timeline

WFIRST/AFTA Preformulation

Formulation

Technology Development for WFIRST/AFTA Continues Through Formulation

2012 2013 2014 2015 2016 2017 2018

NRC WFIRST/ AFTA Study

Budget Request for WFIRST/AFTA Start

WFIRST/AFTA KDP-A

NRC Mid-decade Study
WFIRST / AFTA
Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets

CURRENT STATUS:
• May 2013, NASA Administrator Bolden directed study of WFIRST/AFTA and preserve option for FY17 new start if budget is available.
 – No decision expected before early CY 2016.
• Currently in pre-formulation phase.
 – Activities include technology development for detectors and coronagraph (with STMD), assessment of the 2.4m telescopes including risk mitigation, mission design trades, payload accommodation studies, and observatory performance simulations.
• Maturing key technologies by FY19.
 – H4RG infrared detectors for widefield imager.
 – Internal coronagraph for exoplanet characterization (two architectures identified December 2013; occulting mask coronagraph and phased induced amplitude apodization complex mask coronagraph).
• March 2014 NRC study on WFIRST/AFTA offers positive view of AFTA, with concerns about technology and cost risks.
• WFIRST Preparatory Science (WPS) funds ROSES proposals that are relevant to WFIRST’s goals and WFIRST-specific simulations and models.
• SDT final report due January 31, 2015.

Widefield Infrared Survey Telescope
Top priority of 2010 Decadal Survey
Science themes: Dark Energy, Exoplanets, Large Area Near Infrared Surveys
Mission: 2.4m widefield telescope at GEO, uses existing AFTA hardware to image 0.28 deg2 at 0.8-2.0 µm
Instruments (design reference mission):
Wide Field Instrument, Coronagraph Instrument

• FY15 Budget Request and Appropriation support pre-formulation of WFIRST/AFTA
• Plans support Agency/Administration decision for formulation to begin NET FY 2017, should funding be available.

http://wfirst.gsfc.nasa.gov/
• New Worlds, New Horizons:
 “NASA and NSF should support an aggressive program of ground-based high-
 precision radial velocity surveys of nearby stars to identify potential candidates … for a future space imaging and spectroscopy mission”.

• NASA/NSF Partnership using NOAO share of WIYN telescope
 – Enable a community based exoplanet research program in support of NSF research interests and NASA mission goals (e.g., Kepler, K2, TESS, JWST, WFIRST, etc.).
 – Provide US astronomical community with open access to a world-class precision radial velocity facility instrument

• Anticipated timeline:
 – 2015-2018 – Exoplanet-targeted Guest Observer program with existing instrumentation on WIYN using NOAO share of WIYN time
 – 2015-2018 – NASA funded development of facility-class Extreme Precision Doppler Spectrometer (EPDS) for the WIYN telescope
 • January 2015 – EPDS solicitation as amendment to ROSES 2014 NRA
 • August 2015 – announcement of selection, initiation of project
 • 2017/2018 – commissioning of EPDS and beginning of operations
 – 2018-TBD – Exoplanet-targeted Guest Observer and guaranteed time program at WIYN with EPDS instrument and existing WIYN instruments
2014 Astrophysics Explorer AO

• AO released September 17, 2014.
 - Small Explorer (SMEX), cost cap $125M + LV (or $175M)
 - Mission(s) of Opportunity, cost cap $65M for space, $35M for suborbital-class
 - US Participating Investigators

• Notice of intent were due October 15, 2014.
 - NASA received ~30 NOIs

• Proposals received December 18, 2014.
 - NASA received ~25 proposals (total of all three categories)

• Step 1 Selections expected ~Summer 2015
• Step 2 Downselections expected ~early 2017
• Launch Readiness Date NLT end of 2020

For additional info: http://explorers.larc.nasa.gov/APSMEX/.
Astrophysics Research Program Funding
Snapshot: Most Recent Year

<table>
<thead>
<tr>
<th>Program</th>
<th>Proposals Rec'd</th>
<th>Year-1 $M</th>
<th>Proposals selected</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>APRA-13</td>
<td>177</td>
<td>10</td>
<td>38</td>
<td>21%</td>
</tr>
<tr>
<td>SAT-13</td>
<td>18</td>
<td>5.4</td>
<td>10</td>
<td>56%</td>
</tr>
<tr>
<td>ADAP-14</td>
<td>300</td>
<td>7.5</td>
<td>62</td>
<td>21%</td>
</tr>
<tr>
<td>XRP-14</td>
<td>64</td>
<td>1.1</td>
<td>9</td>
<td>14%</td>
</tr>
<tr>
<td>ATP-14</td>
<td>214</td>
<td>3.5</td>
<td>23</td>
<td>11%</td>
</tr>
</tbody>
</table>

APRA Only
- rocket, balloon, ISS: 52%
- detectors: 16%
- supporting technology: 24%
- lab astro: 8%
- ground/lunar: 0%

All R&A
- Exoplanet
- Infrared/sub-mm/radio
- Data Analysis Program
- Optical/UV
- X-ray, gamma ray
- Particle Astro
- Theory
- Other
- Fund Physics

FY13: $47.7M
Astrophysics ROSES selection rates

Funding (Peak ~ $82M)

AAAC task force on R&A and demographics being led by Prisca Cushman (U. Minn)
The Astrophysics Division will not solicit proposals for new Astrophysics Theory Program (ATP) investigations in ROSES-2015. The next proposal opportunity will be offered in ROSES-2016.

Although there is a break in proposal opportunities, there is no break in funding opportunities and the level of ATP funding is not affected.

<table>
<thead>
<tr>
<th></th>
<th>Proposal Due Date</th>
<th>Selections Announced</th>
<th>Funding Initiated</th>
<th>Delay in Funding after Submission of Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSES-2013</td>
<td>July 12, 2013</td>
<td>January 17, 2014</td>
<td>FY 2015</td>
<td>15-24 months</td>
</tr>
<tr>
<td>ROSES-2015</td>
<td>Not solicited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROSES-2016</td>
<td>July 2016</td>
<td>NLT 180 days after proposal receipt (Early January 2017)</td>
<td>FY 2017</td>
<td>6-12 months</td>
</tr>
<tr>
<td>Proposal Opportunity</td>
<td>Due Date</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermi Guest Investigator – Cycle 8</td>
<td>January 22</td>
<td>ROSES-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kepler K2 Guest Observer – Cycle 2</td>
<td>February 27</td>
<td>ROSES-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandra X-ray Observatory – Cycle 17</td>
<td>March 17</td>
<td>chandra.harvard.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrophysics R&A (APRA)</td>
<td>March 20</td>
<td>ROSES-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic Astrophysics Technology (SAT)</td>
<td>March 20</td>
<td>ROSES-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubble Space Telescope – Cycle 23</td>
<td>April 10</td>
<td>www.stsci.edu/hst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrophysics Data Program (ADAP)</td>
<td>May 15</td>
<td>ROSES-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exoplanet Research Program (XRP)</td>
<td>May 22</td>
<td>ROSES-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFIA – Cycle 4</td>
<td>~June</td>
<td>www.sofia.usra.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spitzer Space Telescope – Cycle 12</td>
<td>August</td>
<td>ssc.spitzer.caltech.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kepler K2 Guest Observer – Cycle 3</td>
<td>September 23</td>
<td>ROSES-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swift Guest Investigator – Cycle 12</td>
<td>September 25</td>
<td>ROSES-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.G. Roman Technology Fellowships (RTF)</td>
<td>November 6</td>
<td>ROSES-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NuSTAR Guest Observer – Cycle 2</td>
<td>November 16</td>
<td>ROSES-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrophysics Theory Program (ATP)</td>
<td>Not this year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NASA Astrophysics Strategy
Progress Toward Decadal Survey Priorities

The NASA FY15 Appropriation, and the notional out year budget planning guidance in the President’s FY15 Budget Request, support:

<table>
<thead>
<tr>
<th>Large-scale 1. WFIRST</th>
<th>Preformulation and focused technology development for WFIRST/AFTA (a 2.4m version of WFIRST with a coronagraph) are underway to enable a new start NET FY2017. Budget line established for an Astrophysics Decadal Strategic Mission.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale 2. Augmentation to Explorer Program</td>
<td>Astrophysics Explorers planned budget increased to support decadal cadence of AOs including SMEX AO in Fall 2014 and MIDEX AO in late 2016/early 2017.</td>
</tr>
<tr>
<td>Large-scale 3. LISA</td>
<td>Discussing partnership on ESA’s L3 gravitational wave observatory and participating in ESA-led assessments in 2014-2015. Strategic astrophysics technology (SAT) investments plus support of LISA Pathfinder.</td>
</tr>
<tr>
<td>Large-scale 4. IXO</td>
<td>NASA is pursuing a partnership on ESA’s L2 Athena X-ray observatory; the Athena study phase, with U.S. participation, is underway. Strategic astrophysics technology (SAT) investments.</td>
</tr>
<tr>
<td>Medium-scale 1. New Worlds Technology Development Program</td>
<td>Focused technology development for a coronagraph on WFIRST, strategic astrophysics technology (SAT) investments, and exoplanet probe mission concept studies. Established partnership with NSF to develop extreme precision Doppler spectrometer as facility instrument. Exozodi survey using LBTI.</td>
</tr>
</tbody>
</table>
Progress Toward Decadal Survey Priorities

The NASA FY14 Appropriation, the President’s FY15 Budget Request, and its notional out years support:

<table>
<thead>
<tr>
<th>Medium-scale 2. Inflation Probe Technology Development Program</th>
<th>Balloon-borne investigations plus strategic astrophysics technology (SAT) investments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-scale. Research Program Augmentations</td>
<td>Increased annual R&A budget by 10% from FY10 to FY12 and beyond. Within R&A: established Theoretical and Computational Astrophysics Networks (TCAN) program with NSF; funding available for astrophysics theory; funding available for lab astrophysics; funding available for suborbital payloads.</td>
</tr>
<tr>
<td>Small-scale. Intermediate Technology development Augmentation</td>
<td>Established competed Strategic Astrophysics Technology (SAT) program element; directed technology funding for WFIRST and other large-scale decadal priorities.</td>
</tr>
<tr>
<td>Small-scale. Future Ultraviolet-Visible Space Capability</td>
<td>Strategic Astrophysics Technology (SAT) investments.</td>
</tr>
<tr>
<td>Small-scale. SPICA (U.S. contribution to JAXA-led)</td>
<td>Not supported as a strategic contribution; candidate for Explorer Mission of Opportunity.</td>
</tr>
</tbody>
</table>
Planning for the 2015-2016 Mid-Decade Review

• The NASA Authorization Act of 2005 requires assessments of NASA’s science programs that include mid-decade reviews.
 – The Astrophysics Mid-Decade Review will be during 2015-2016
 – Study will be co-sponsored by NASA, NSF, and DOE (the Agencies)
• Given the funding circumstances that are substantially below those assumed in the Decadal Survey, the committee's review will describe:
 – The most significant scientific discoveries, technical advances, and relevant programmatic changes in astronomy and astrophysics since the Decadal Survey;
 – How well the Agencies' programs address the strategies, goals, and priorities outlined in the Decadal Survey and other NRC reports;
 – Progress toward realizing these strategies, goals and priorities; and
 – Any actions that could be taken to maximize the science return of the Agencies’ programs.
• The Agencies are in the process of charging the NRC, and formation of the Study Committee will begin soon.
ASTROPHYSICS

Decadal Survey Missions

1990
1999
2003
2001
2010
2018
LRD: 2018
LRD: 2020s

1972
Decadal Survey
Hubble

1982
Decadal Survey
Spitzer

1991
Decadal Survey
JWST

2010
Decadal Survey
WFIRST
Preparing for the 2020 Decadal Survey
Large Mission Concepts

- The 2020 Decadal Survey will prioritize large space missions to follow JWST and WFIRST.
 - To enable this prioritization, NASA needs to provide information on several candidate large space mission concepts for consideration by the 2020 Decadal Survey Committee.

- What information needs to be provided to the Decadal Survey committee to enable prioritization of large missions
 - Science case
 - Strawman design reference mission with strawman payload
 - Technology development needs
 - Cost requirements assessment

- NASA needs to initiate technology development for candidate large missions so that technology will be ready when needed.
 - Technology needs to be sufficiently mature when it is time to start the highest priority large mission in the 2020 Decadal Survey.
 - The next large mission after WFIRST could be started when funding becomes available as WFIRST approaches launch in the early or mid-2020s.
Preparing for the 2020 Decadal Survey
Large Mission Concepts

Part A – 2015
• Identify a small set of candidate large mission concepts to study
 – Incorporate community input through the three Astrophysics Program Analysis Groups (PAGs)

Part B – 2016-2019
• Initiate studies
 – Includes community-based Science and Technology Definition Teams
• Conduct studies
 – Includes NASA Center-provided engineering teams
• Identify technology requirements to motivate early technology development
 – Enables funding through existing Astrophysics technology programs
• Deliver results to 2020 Decadal Survey committee

Preparing for the 2020 Decadal Survey
Large Mission Concepts

Part A: Identify a small set (~3-4) of large mission concepts to study

• The community has invested considerable resources in discussing notional classes of mission concepts for consideration as large missions following JWST and WFIRST and in parallel with the ESA-led missions Euclid, Athena, and L3.

• NASA has drawn an initial small set of 4 candidate mission concepts from the missions discussed in these strategic documents.

• I am charging the Astrophysics PAGs to solicit community input for the purpose of commenting on the small set, including adding or subtracting large mission concepts; each PAG will submit a report regarding the small set of large mission concepts for consideration by the NAC Astrophysics Subcommittee.

• At its Fall 2015 meeting, the NAC Astrophysics Subcommittee will consider the three PAG reports and submit a report to NASA on the small set of large mission concepts for study.

• The Director of the NASA Astrophysics Division will decide which large mission concepts will be studied as input for the 2020 Decadal Survey.
Preparing for the 2020 Decadal Survey
Large Mission Concepts

The initial short list (in alphabetical order):

- **FAR IR Surveyor** – The Astrophysics Visionary Roadmap identifies a Far IR Surveyor as contributing through improvements in sensitivity, spectroscopy, and angular resolution.

- **Habitable-Exoplanet Imaging Mission** – The 2010 Decadal Survey recommends that a habitable-exoplanet imaging mission be studied in time for consideration by the 2020 decadal survey.

- **UV/Optical/IR Surveyor** – The Astrophysics Visionary Roadmap identifies a UV/Optical/IR Surveyor as contributing through improvements in sensitivity, spectroscopy, high contrast imaging, astrometry, angular resolution and/or wavelength coverage. The 2010 Decadal Survey recommends that NASA prepare for a UV mission to be considered by the 2020 Decadal Survey.

- **X-ray Surveyor** – The Astrophysics Visionary Roadmap identifies an X-ray Surveyor as contributing through improvements in sensitivity, spectroscopy, and angular resolution.
Backups
SMD Education

• Education is funded in the FY15 NASA Appropriation Act at $42M SMD-wide as a separate budget line (so E/PO is no longer budgeted as 1% of every mission).

• SMD will compete and consolidate education activities for FY16.

• SMD intends to release a Cooperative Agreement Notice (CAN) soliciting team-based proposals for science education.

• The goal of the NASA SMD Science Education CAN is to meet the following NASA SMD Science Education Objectives: Enabling STEM education, improving U.S. science literacy; advancing National education goals; and leveraging science education through partnership.

• The schedule is as follows:

 Draft CAN Release Date (target) October 2014
 Final CAN Release Date (target) ~January 2015
 Preproposal Conference ~2 weeks after final CAN release
 Notice of Intent to Propose Deadline 30 days after final CAN release
 Electronic Proposal Submittal Deadline 90 days after final CAN release
 Selections Announced (target) Summer 2015
 Projects Begin (target) October 1, 2015
• The **TESS** Explorer Mission was confirmed to begin implementation (KDP-C) in FY15.
• The **WFIRST/AFTA** science definition team report will be completed in FY15.
• The **ISS-CREAM** experiment will be launched to the International Space Station (KDP-E) in FY15.
• The Step 1 selection (KDP-A) will be made for the next Small Astrophysics **Explorer** and Explorer Mission of Opportunity in FY15.
• ESA’s **LISA Pathfinder** with NASA’s ST-7 experiment will launch (KDP-E) in FY15.
• Manufacture, assembly, and test of the **Euclid** flight detectors will continue in FY15.
• JAXA’s **ASTRO-H** mission spacecraft system level test will take place in FY15.
• The Astrophysics **Archives Senior Review** will be held in FY15.
• **Hubble** will achieve 25 years of operation in FY15.
• The NRC **Mid-Decade Review** will begin in FY15.
• Four **Balloon** campaigns will be conducted in FY15.
• Five **Sounding Rockets** with Astrophysics payloads will launch in FY15.
SOFIA
Stratospheric Observatory for Infrared Astronomy

CURRENT STATUS:
• Declared operational in May 2014
• Completed heavy maintenance in Germany, December 2014
• Cycle 3 investigations will begin February 2015, utilizing all six instruments
• Cycle 3 includes a six-week southern hemisphere deployment with two instruments
• Second generation instruments under development.
 – HAWC+: upgraded far infrared imager & polarimeter. (2016 commissioning)
 – upGREAT: multi-pixel heterodyne spectrometer (2015 commissioning)
• Considering a solicitation for third-generation instruments within the next year
• Astrophysics review June 2014 & IG report July 2014 suggested changes to increase scientific productivity
 – Do not concentrate on flight hours as sole metric.
 – Development of instruments increases productivity.
 – Appropriate funding of analysis should be revisited.
 – The pipeline is a bottleneck toward timely science.
 – SOFIA’s unique capabilities are the region longer than 27 microns and very high spectral resolution.
• FY15 appropriation continues SOFIA at reduced budget level.
 – Requires Senior Review before termination.

• World’s Largest Airborne Observatory
• 2.5-meter telescope
• Capable of observing from the visible to the far infrared
• 80/20 Partnership between NASA and the German Aerospace Center (DLR)
• Mission Ops based at NASA-Armstrong
• Science Ops based at NASA-Ames
• Six First-Generation instruments
 – Four U.S., two German
 – Imaging, Spectroscopy, and Photometry
• Limited Science Ops began in 2010
• Transitioned from Development Phase to Operational Phase in May 2014
Kepler
Kepler Space Telescope

CURRENT STATUS:
• Kepler “K2” observation method was approved for operations through FY2016 after completion of the 2014 Senior Review.
 – Kepler is conducting observations along the ecliptic, changing its orientation four times per year.
 – The third 75-day Campaign commenced in November 2014 and runs until February 2015.
 – Targets are selected via proposals from the community. Cycle 2 proposals (covering Campaigns 6-7) are due January 16, 2015
 – December 18, 2014: First confirmed planet discovery using K2 observation method
• From 2009-13, Kepler continuously monitored 100 sq. deg. field in constellations of Cygnus and Lyra for 4+ years.
 – These observations ended after failure of 2nd reaction wheel.
• Analysis of first 4 years of Kepler data has revealed:
 – Approximately 4200 exoplanet candidates
 – Approximately 1000 candidates confirmed as planets to date
 – More than 100 planets discovered in their star’s “habitable zone”.
• Analysis of the full (4+ year) Kepler data set ongoing.

• NASA’s first space mission dedicated to the search for extrasolar planets, or exoplanets
• PI: W. Borucki, NASA Ames Research Center
• Launch Date: March 6, 2009
• Payload: 0.95-meter diameter telescope designed to measure the tiny dimming that occurs when an orbiting planet passes in front of (‘transits’) a star
• Scientific objectives:
 – conduct census of exoplanet systems
 – explore the structure and diversity of extrasolar planetary systems
 – determine the frequency of habitable, Earth-sized planets in our galaxy
ST-7/LISA Pathfinder
ST-7/Disturbance Reduction System (DRS)

CURRENT STATUS:
- Ongoing tests at Airbus UK testbed
- Shelf life testing has been completed at JPL with positive results.
- Extended mission being discussed
- Spacecraft assembly is still ongoing
- System level thermal vacuum test in April/May 2015
- System level acoustics and mass properties in May 2015
- Shipping in June to launch site
- Launch July 31, 2015

• ESA Mission with NASA Collaborating
• Project Category: 3 Risk Class: C
• DRS flies on the ESA LISA Pathfinder spacecraft
• Sun-Earth L1 halo orbit
• Drag-free satellite to offset solar pressure
• Payload delivery: July 2009 – COMPLETE
• Launch date: July 31, 2015
• Operational life: 2 months
• Data Analysis: 12 months
ASTRO-H
Soft X-ray Spectrometer and Soft X-ray Telescope Mirrors

CURRENT STATUS
The U.S. is providing instrument contributions to the JAXA ASTRO-H mission.
• Soft X-ray telescope mirrors (SXT-S and SXT-I) – Both delivered.
• Calorimeter Spectrometer Insert (CSI) – delivered and integrated on to the FM Dewar and has successfully performed for all testing activities.
• Completed FM Dewar cryo performance testing in December with excellent result.
• Supporting additional dewar testing in preparation for integration onto spacecraft.

UPCOMING EVENTS:
• November – JAXA CDR 2
• December – FM XBOX delivery to JAXA
• January 2015 – ADRC delivery to JAXA
• January 2015 (NET) – FM Dewar delivery to spacecraft

• Explorer Mission of Opportunity
• PI: R. Kelley, Goddard Space Flight Center
• Launch Date: Nov 2015 on JAXA H-IIA
• Science Objectives: Study the physics of cosmic sources via high-resolution X-ray spectroscopy. The SXS will enable a wide range of physical measurements of sources ranging from stellar coronae to clusters of galaxies.
• Operations: Prime Mission is 3 years
CURRENT STATUS:

- NICER passed Confirmation (KDP-C), for approval to enter implementation phase, on February 24, 2014.
- Project successfully passed Critical design review (CDR) September 2014
- Design is maturing quickly; engineering test units of many subsystems have been developed and tested. Fabrication has started on the instrument optical bench, detector subassemblies, and pointing system, and electrical subsystem
- Integration of the x-ray timing instrument to start in March 2015, to support testing, beginning in June 2015

Explorer Mission of Opportunity
- PI: Keith Gendreau, GSFC
- Launch: October 2016 on Space-X Falcon 9
- Science Objectives: Perform high-time-resolution and spectroscopic observations of neutron stars in the .2-12 keV energy range to study the physics of ultra-dense matter in the core of neutron stars.
- Instrument: X-ray Timing Instrument uses X-ray concentrators and detectors to detect X-ray photons and return energy and time of arrival.
- Platform: Located externally on the ISS, ExPRESS Logistics Carrier 2, Starboard 3 site
- Operations: Operated on a non-interference basis for 18 months
- SEXTANT for Pulsar navigation demo funded by NASA’s Space Technology Mission Directorate
Standard Explorer (EX) Mission

PI: G. Ricker (MIT)

Mission: All-Sky photometric exoplanet mapping mission.

Science goal: Search for transiting exoplanets around the nearby, bright stars.

Instruments: Four wide field of view (24x24 degrees) CCD cameras with overlapping field of view—operating in the Visible-IR spectrum (0.6-1 micron).

Operations: 2017 launch with a 2-year prime mission

CURRENT STATUS:
- Downselected April 2013.
- Major partners:
 - PI and science lead: MIT
 - Project management: NASA GSFC
 - Instrument: Lincoln Laboratory
 - Spacecraft: Orbital Science Corp
- Tentative launch readiness date August 2017.
- High-Earth elliptical orbit (17 x 58.7 Earth radii).
- Development progressing on plan.
 - Preliminary Design Review (PDR) successfully completed Sept 9-12, 2014.
 - Confirmation Review, for approval to enter implementation phase, successfully completed October 31, 2014.
Euclid
A visible and near-infrared telescope to explore cosmic evolution

CURRENT STATUS:
• Currently in implementation phase.
• ~50 U.S. scientists are members of the Euclid Science Team that will analyze the data, and make maps of the sky.
• First experimental manufacturing run for the Euclid near-infrared detectors was completed in FY 2014 (ESA) and are currently being evaluated and characterized.
• NASA has initiated the buy for the flight infrared detectors. Half of the first set of detectors have been grown.
• NASA will test and characterize the near-IR flight detectors.
• NASA is funding the ENSCI (Euclid NASA Science Center at IPAC). ENSCI will:
 - Support all segments of US community on Euclid to enhance science utilization
 - Integrate into Euclid Science Ground System provided by the Euclid consortium to gain/contribute expertise in pipelines

• ESA Cosmic Vision 2015-2025 Mission, M-Class with NASA participation.
• 1.2-m mirror, visible & near-IR images, spectra
• Launch Date: Mar 2020
• Science Objectives:
 - Euclid will look back 10 billion years into cosmic history.
 - Probe the history of cosmic expansion (influenced by dark energy and dark matter) and how gravity pulls galaxies together to form the largest structures.
 - The shapes of distant galaxies appear distorted because the gravity of dark matter bends their light (gravitational lensing). Measuring this distortion tells us how the largest structures were built up over cosmic time.
 - Measuring how strongly galaxies are clumped together tells us how gravity influences their motions, and how dark energy has affected the cosmic expansion.
Athena
Advanced Telescope for High Energy Astrophysics

- Second ESA Cosmic Vision Large mission
 - L-class with NASA/JAXA participation
 - Decadal Survey recommendation
 - Large X-ray mirror, X-IFU and WFI instruments
- Launch Date: 2028
- Breakthrough Technologies:
 - High Throughput, Wide FOV, High spectral resolution X-ray Astronomy
 - 10x Chandra area, 100x improved non-dispersive spectral resolution, 5x FOV.
- Science Objectives: The Hot and Energetic Universe: How does ordinary matter assemble into the large scale structures that we see today? How do black holes grow and shape the Universe?

CURRENT STATUS:
- Selected as 2nd Large mission in ESA Cosmic Visions Program
- Currently in 2 year Study Phase
- NASA and US community involved in Study Phase via membership on ESA-chartered Athena Science Study Team and Science Working Groups
- NASA budgeting for a $100M-$150M hardware contribution, plus a US GO program and a U.S. data center
- NASA and ESA are discussing possible NASA contributions, such as:
 - Portions of the X-ray Integral Field Unit
 - Portions of the Wide Field Imager
 - Portions of the X-ray Mirror
 - Contribution to science data center (U.S. node)
- NASA continues to invest in Athena technologies via SAT and directed investigations.
SMD Organization

Associate Administrator (AA) (John Grunsfeld)
Deputy AA (Geoff Yoder)

- **Deputy AA for Programs** (Geoff Yoder)
- **Deputy AA for Mgt** (Roy Maizel)
- **Deputy AA for Research** (Marc Allen)

Resource Management Division
Dir. (C. Tupper)
Dep. (K. Wolf)

Strategic Integration & Management Division
Dir. (D. Woods)
Dep. (J. Feeley)

Earth Science Division
Dir. (M. Freilich)
Dep. (M. Luce)
- Flight (S. Neeck - Act)
- Applied Sciences (L. Friedl)
- Research (J. Kaye)
- Technology (GSFC) (G. Komar)

Joint Agency Satellite Division
Dir. (S. Clarke)
Dep. (J.C. Duh)

Heliophysics Division
Dir. (J. Newmark-Act)
Dep. (S. Smalley)

Planetary Science Division
Dir. (J. Green)
Dep. (D. Schurr)
- Solar System Expl (D. Schurr - Act)
- Mars Exploration (J. Watzin)
- Planetary Research (J.Rall)

Astrophysics Division
Dir. (P. Hertz)
Dep. (A. Razzaghi)

Science Engagement & Partnerships Dir. (K. Erickson)

JWST Program Office
Dir. (Vacant)*
Dep. (E. Smith)

- Embeds/POCs
 - Chief Engineer (J. Pellicciotti)
 - Safety & Msn Assurance (S. McMillian)
 - General Counsel (S. Barber)
 - Legislative & Intergvtl Affairs (G. Adler)
 - Public Affairs (D. Brown)
 - Intl & Interagency Relations (K. Feldstein)

* Direct report to NASA Associate Administrator

December 2014
Astrophysics Division - Science Mission Directorate

Resource Management
- **Omana Cawthon**
- **Clemencia Gallegos-Kelly**

Director
Paul Hertz

Deputy Director
Andrea Razzaghi

Lead Secretary
Kelly Johnson

Secretary
Leslie Allen

Program Support Specialist
Jackie Mackall

Cross Cutting
- **Technology Lead:** Billy Lightsey*
- **Division E/PO POC:** Hashima Hasan (Lead Comm Team)
- **Division Public Affairs POC:** Lisa Wainio*
- **Information Manager:** Lisa Wainio*
- **Hubble 25 Coordinator:** Amber Straughn*

Astrophysics Research
- **Program Manager:** Wilt Sanders*
- **Program Support:** Janet Larson*
- **Astrophysics Data Analysis:** Doug Hudgins*
- **Astrophysics Theory:** Keith MacGregor*
- **Exoplanet Research:** Mario Perez*
- **APRA lead:** Michael Garcia*
- **Cosmic Ray, Fund Phys.:** Vernon Jones, Keith MacGregor*
- **Gamma Ray/X-ray:** Michael Garcia*, Stefan Immler*
- **Optical/Ultraviolet:** Michael Garcia*, Hashima Hasan, Mario Perez*, Martin Stil*
- **IR/Submillimeter/Radio:** Dominic Benford*, Doug Hudgins, Eric Tolstrop*
- **Lab Astro:** Vacant
- **Roman Tech Fellows:** Billy Lightsey*
- **Data Archives:** Hashima Hasan
- **Astrophys Sounding Rockets:** Wilt Sanders*
- **Balloons Program:** Vernon Jones(PS), Mark Sistilli (PE)

Programs / Missions

<table>
<thead>
<tr>
<th>Programs / Missions</th>
<th>Program Scientist</th>
<th>Program Executive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exoplanet Exploration (EXEP)</td>
<td>Doug Hudgins</td>
<td>John Gagosian</td>
</tr>
<tr>
<td>Keck</td>
<td>Hashima Hasan</td>
<td>Mario Perez*</td>
</tr>
<tr>
<td>Kepler</td>
<td>Debra Wallace*</td>
<td>John Gagosian</td>
</tr>
<tr>
<td>LBTI</td>
<td>Hashima Hasan</td>
<td>Mario Perez*</td>
</tr>
<tr>
<td>NEXScI</td>
<td>Hashima Hasan</td>
<td>Mario Perez*</td>
</tr>
<tr>
<td>Cosmic Origins (COR)</td>
<td>Mario Perez*</td>
<td>Jeff Hayes locus*</td>
</tr>
<tr>
<td>Herschel</td>
<td>Dominic Benford*</td>
<td>Jeff Hayes</td>
</tr>
<tr>
<td>Hubble</td>
<td>Michael Garcia*</td>
<td>John Gagosian</td>
</tr>
<tr>
<td>JWST</td>
<td>Hashima Hasan</td>
<td>John Gagosian</td>
</tr>
<tr>
<td>SOFIA</td>
<td>Eric Tolstrop*</td>
<td>Jeff Hayes</td>
</tr>
<tr>
<td>Spitzer</td>
<td>Keith Macgregor*</td>
<td>Jeff Hayes</td>
</tr>
</tbody>
</table>

Physics of the Cosmos (PCOS)	Rita Sambruna	Lia LaPiana
Athena	Michael Garcia*	Lia LaPiana
Chandra	Stefan Immler*	Jeff Hayes
Euclid	Eric Tolstrop*	Keith Chamberlin*
Fermi	Keith MacGregor*	Jeff Hayes
Planck	Rita Sambruna	Jeff Hayes
ST-7/LPF	Wilt Sanders*	Keith Chamberlin*
XMM-Newton	Stefan Immler*	Jeff Hayes

Astrophysics Explorers (APEX)	Wilt Sanders*	Mark Sistilli
ASTRO-H	Lou Kaluzienski	Jeanne Davis
NICER	Rita Sambruna	Jeanne Davis
NuSTAR	Lou Kaluzienski	Jeff Hayes
Suzaku	Stefan Immler*	Jeff Hayes
Swift	Martin Stil*	Jeff Hayes
TESS	Doug Hudgins	Mark Sistilli

| WFIRST/AFTA | Dominic Benford* | Lia LaPiana |

* Member of the Resources Mgmt Division
* Detaillee, IPA, or contractor

JWST now part of the JWST Program Office.