Big Data Visualization for Planetary Science

Emily Law - emily.s.law@jpl.nasa.gov
Shan Malhotra - shan.malhotra@jpl.nasa.gov
Takeaway

• Big data has many challenges
• Opportunity to leverage big data to improve user experiences and outcome
• Interactive Visualization and Analytics are critical
• Proven technologies and capabilities of those tools available today, yet data usability remains a challenge
• Path forward
 – Increase focus on data usability
 – Invest and research in these key areas
 – Work to improve and scale up data usability to meet increasing user expectations
 – Partner with industries
Outline

• Solar System Treks Project Overview
• What Big Data Challenges Treks face
• How Treks Address Big Data Challenges
• Treks Features
• Demo / Discussion
Solar System Treks Project Overview

- Sponsored by SMD and HEOMD, Mission (e.g., Cassini)
- Development and operations at JPL
- An element of NASA’s Solar System Exploration Research Virtual Institute (SSERVI)
- A family of web based interactive portals for mission planning, scientific research and public outreach
 - Visualization and Analysis tools
 - Data products from many past and current missions
- Data Access APIs
 - A variety of user interfaces (e.g., virtual reality goggles)
 - A variety of external platforms (e.g., Eyes on Solar System, planetariums)
Operational Treks

• Mars Trek
 https://marstrek.jpl.nasa.gov

• Moon Trek
 https://moontrek.jpl.nasa.gov

• Vesta Trek
 https://vestatrek.jpl.nasa.gov
Treks In Work

- Titan Trek
- Icy Moons Trek
- Phobos Trek
- Ceres Trek
- Comet CG Trek
What Big Data Challenges Treks face

- **Ever increasing (Velocity) Data Volume**
 - Over 3000 data products and > 8 TB data

- **Usability of large volume and Variety of data**
 - Discovery (browse, search)
 - Provenance, Quality (**Veracity**)
 - Download
 - Sharing, Collaboration
 - **Value** Transformation of Archive Data for Visualization and Analysis
How Treks Address Big Data Challenges

• Architecture (Data and System)
 – Scalability
 – Extensibility
 – Reusability
 – Standardization / Interoperability
 – FAIR (Findable, Accessible, Interoperable, Reusable)

• Approach
 – Common Service Oriented Infrastructure
 – Data Science framework (Visualization and Analysis)
 – Open Source Big Data Technologies (e.g., Cloud computing, Hadoop, No SQL, Deep Learning)

• Applicable to other domains
 – E.g., Earth Science (Hydrology: Water Trek)
Treks Features

• Data products browse, search & download
 Analysis tools
 • Lighting, Measurement, Profile, Sun angle, Slope,
 Rock/Crater Detection, Hazard, Surface Potential,
 Subset, Path
• Visualization
 • Overlay
 • 3D Flyover
 • Landing Site features
• Collaboration (sharing)
• 3D print
• Data
 • Past/current missions and various instruments
 • Various types of data products
• Users
 • Missions, Lunar scientists, Teachers/Students,
 General Public
Variety of User Experiences

- Virtual Reality Client
- Web
 - REST API
- HyperWall
- Touch Table

Serving data to Morrison and Hayden planetariums
Thank You!

Questions?
Lighting Analysis
Lighting Analysis
Lighting Analysis
Slope Tool

Bounding Box:
- Top: 42.6289
- Left: -11.5748
- Right: 10.9404
- Bottom: -43.3870

DEM: LRO LROC DEM, Tycho Crater

Email* Enter your email to get the result

Submit Cancel
Slope Tool
Crater Detection