Astrophysics - Big Picture

• The FY16 budget request provides funding for NASA astrophysics to continue its programs, missions, and projects as planned
 - The total funding (Astrophysics including JWST) is flat at ~$1.3B through FY20
 - Fully fund JWST to remain on plan for an October 2018 launch
 - Fund continued pre-formulation and technology work leading toward WFIRST; rate of progress depends on FY16 appropriation level

• The operating missions continue to generate important and compelling science results, and new missions are under development for the future
 - Chandra, Fermi, Hubble, Kepler/K2, NuSTAR, Spitzer, Swift, XMM-Newton all operating well; next Senior Review is Spring 2016 for FY17+; Suzaku mission ended
 - SOFIA is in prime operations as of May 2014; Senior Review is Spring 2018
 - WFIRST being studied, next Explorers being selected (SMEX in 2015, MIDEX in 2017), NASA joining ESA’s Athena and ESA’s L3 gravitational wave observatory

• Progress being made against recommendations of the 2010 Decadal Survey
 - Update to the Astrophysics Implementation Plan released in December 2014
 - NRC Mid Decade Review (with NSF, DOE) underway; Jackie Hewitt (MIT) is chair; report expected in May 2016
 - NASA initiating large mission concept studies as input for 2020 Decadal Survey

• All ongoing work continuing under FY16 Continuing Resolution
FY 2015 Fort Sumner Balloon Campaign

Test Flight I – Robert Salter, CSBF
Launch Date: September 4, 2015 /14:55 Z
Flight Duration: 7 hrs 45 min

High Altitude Student Platform (HASP) –
Dr. Greg Guzik, Louisiana State Univ.
Launch Date: Sept. 7, 2015 /13:47 Z
Flight Duration: 26 hrs 31 min

RaD-X – Dr. Chris Mertens, LaRC
Launch Date: Sept. 25, 2015 /17:05:39 Z
Flight Duration: 21 hrs 52 min

Test Flight II – Bryan Stilwell, CSBF
Launch Date: Oct. 10, 2015 /14:51:47 Z
Flight Duration: 11 hrs 27 min
Upcoming Suborbital Launches

• Fall/Winter FY16 Sounding Rocket Launches @ White Sands NM
 - Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE); S. Chakrabarti, U. Massachusetts at Lowell (Nov 2015)
 - Diffuse X-ray emission from the Local galaxy (DXL); M. Galeazzi, U. Miami (Dec 2015)
 - Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); S. McCandliss, Johns Hopkins U. (Dec 2015)
 - Colorado High-resolution Echelle Stellar Spectrograph (CHESS); K. France, U. Colorado (Feb 2015)

• Winter FY16 Long Duration Balloon Campaign @ McMurdo Antarctica
 - Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS); P. Saint-Hilaire, U.C Berkeley (Dec 2015)
 - Stratospheric Terahertz Observatory (STO-II); C. Walker, U. Arizona (Dec 2015)

• Spring FY16 Ultra Long Duration Balloon Campaign @ Wanaka NZ
 - Compton Spectrometer and Imager (COSI); S. Boggs, U.C. Berkeley (Apr 2015)
Response to Recommendations: Suborbital

- NASA has continued to invest in suborbital-class payloads (balloons, sounding rockets, ISS) through the APRA program: figure shows fiscal year amounts for balloons, rockets, ISS.
 - $32M/yr over FY13-FY15; increase of $7M/yr (25%) since FY09
- NASA has continued to invest in additional balloon capabilities, including mid-latitude Ultra-Long Duration Balloon (ULDB) flights.
 - Super pressure balloons (SPBs) have been developed by NASA to support LDB flights through diurnal cycles at mid-latitudes: SPBs have been tested from multiple sites, including Sweden, Antarctica, and New Zealand.
 - Long duration ballooning from a mid-latitude site (New Zealand) was demonstrated in 2015 with a 32-day, around-the-world, balloon test.
 - Arc-second pointing capabilities are now available with the facility Wallops Arc Second Pointer (WASP).
 - A second payload integration building has been funded for assembly at McMurdo Station, Antarctica, where three Long Duration Balloon (LDB) flights per season are now standard.
 - A NASA payload recovery plane is being procured for Antarctica.
 - $36M/yr over FY15-FY20 (planned); increase of $13M/yr (50%) since FY09
Astrophysics Missions in Development

<table>
<thead>
<tr>
<th>Mission</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISA Pathfinder</td>
<td>12/2015</td>
<td>ESA-led Mission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA supplied the ST7/Disturbance Reduction System (DRS)</td>
</tr>
<tr>
<td>TESS</td>
<td>8/2017</td>
<td>NASA Mission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transiting Exoplanet Survey Satellite</td>
</tr>
<tr>
<td>ASTRO-H</td>
<td>11/2015 NET</td>
<td>JAXA-led Mission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA supplied the Soft X-ray Spectrometer (SXS) instrument</td>
</tr>
<tr>
<td>JWST</td>
<td>10/2018</td>
<td>NASA Mission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>James Webb Space Telescope</td>
</tr>
<tr>
<td>NICER</td>
<td>8/2016</td>
<td>NASA Mission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neutron Star Interior Composition Explorer</td>
</tr>
<tr>
<td>Euclid</td>
<td>2020</td>
<td>ESA-led Mission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA is supplying the NISP Sensor Chip System (SCS)</td>
</tr>
</tbody>
</table>
• Manufacturing coming to a close
 ‣ 2 of 5 Sunshield layers finished, 3 others in fabrication
 ‣ Flight spare cryocooler compressor assembly expected in February
• Many activities are deep into Integration and Test (I&T):
 ‣ Telescope Structure delivered, optics integration starting soon
 ‣ Pathfinder telescope + flight Aft Optics in 2nd cryo test
 ‣ ISIM starting CV3 imminently
 ‣ Spacecraft bus structure delivered to I&T
 ‣ Flight cryocooler compressor assembly in acceptance testing
• Commissioning planning moving into high gear
Full-Scale Engineering Model
Sunshield

Flight Aft UPS

Test Rim/Hub structure
OGSE2 test set up: Pathfinder Telescope and flight AOS
TELESCOPE STRUCTURE
FLIGHT CRYOCOOLER

Compressor Assembly and deployable refrigerant line

Heat exchange Stage Assy (HSA)

CryoCooler Electronics (CCE) during EMI testing @ JPL
WATCH ITEMS

- Schedule reserve consumption, mid-boom remanufacturing
- ¾” actuator development
- Sunshield manufacturing pace
- OTE pinned joints
SIMPLIFIED SCHEDULE

months of project funded critical path (mission pacing) schedule reserve

Spacecraft panels to BT
- Spacecraft Fabrication & Assembly
- Flight Sunshield Fabrication

Panel Integration
- Spacecraft I & T
- Sunshield Integration

Spacecraft I & T
- Observatory BT

Cryocooler Assembly & Test

ISIM Cryovacuum Test #3

OT15 = Optical Telescope + ISIM

Science Instruments
- Backplane Assembly
- Optics Integration

Telescope

Northrop-Grumman
Goddard Space Flight Center
Johnson Space Center
Guiana Space Center
Funded Schedule Reserve

- Government Shutdown
- Accommodate installation of thermal sensors for OTIS testing
- Aft Unitized Pallet Structure remanufacture delay
- Cryocooler Compressor Assembly manufacturing delays
- NIRCam Sensor Chip Arrays, Microshutter electronics replacement
- Cryocooler manufacturing issues and ISIM Heat Strap delay
- Cryocooler Compressor Assembly bakeout delay
- NIRCam Sensor Chip Arrays, ISIM heat straps

Graph showing the funded schedule reserve with specific events and their impact on the timeline.
Astrophysics Missions in Pre-Formulation

SMEX / MO – 2019/2020
see next chart for list of selections

MIDEX / MO – 2022/2023
WFIRST-AFTA – NLT 2026
Athena – 2028

All launch dates notional
Astrophysics SMEX/MO Missions in Formulation

SPHEREx
PI: J. Bock, Caltech
An All-Sky Near-IR Spectral Survey

PRAXyS
PI: K. Jahoda, GSFC
Polarimeter for Relativistic Astrophysical X-ray Sources

IXPE
PI: M. Weisskopf, MSFC
Imaging X-ray Polarimetry Explorer

GUSTO: Gal/Xgal U/LDB Spectroscopic Stratospheric Terahertz Observatory
PI: C. Walker, U. Arizona

US Participation in JAXA’s LiteBIRD CMB Polarization Survey
PI: A. Lee, UC Berkeley
Executive Summary

- Huge progress on WFIRST over the past two years
- SDT studies & NRC Harrison committee report confirm that WFIRST-AFTA exceeds NWNH requirements in all areas.
- $107M in FY14 & 15 has enabled major steps forward and NRC-Harrison committee recommendations have been addressed (H4RGs, coronagraph, mission design). Planning against $56M in FY16, exact amount depends on appropriations.
- Coronagraph on track, technology development on schedule. Wide Field detector technology development on schedule
- SDT 2014 & 15 studies completed
- Preparatory Science teams selected
- Pasadena conferences held
- Special session at AAS's & IAU
- Science team NRA released
- Industry study RFIs received
- Significant international interest (Canada, ESA, Japan, Korea)
Coronagraph Technology Milestones

<table>
<thead>
<tr>
<th>Milestone Description</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Shaped Pupil mask fabricated with reflectivity of 10^{-4} and 20 μm pixel size.</td>
<td>7/21/14</td>
<td>✔</td>
</tr>
<tr>
<td>2 Shaped Pupil Coronagraph demos 10^{-8} raw contrast with narrowband light.</td>
<td>9/30/14</td>
<td>✔</td>
</tr>
<tr>
<td>3 PIAACMC mask fabricated with 10^{-8} raw contrast with 10% broadband light.</td>
<td>12/15/14</td>
<td>✔</td>
</tr>
<tr>
<td>4 Hybrid Lyot Coronagraph demos 10^{-8} raw contrast with narrowband light.</td>
<td>2/28/15</td>
<td>✔</td>
</tr>
<tr>
<td>5 Occulting Mask Coronagraph demos 10^{-8} raw contrast with 10% broadband light.</td>
<td>9/15/15</td>
<td>✔</td>
</tr>
<tr>
<td>6 Low Order Wavefront Sensing provides jitter sensing better than 0.4 mas rms.</td>
<td>9/30/15</td>
<td>✔</td>
</tr>
<tr>
<td>7 Spectrograph read-out demo to have low dark current and read noise.</td>
<td>8/25/16</td>
<td></td>
</tr>
<tr>
<td>8 PIAACMC coronagraph demos 10^{-8} raw contrast with 10% broadband light.</td>
<td>9/30/16</td>
<td></td>
</tr>
<tr>
<td>9 Occulting Mask Coronagraph demos 10^{-8} raw contrast with 10% broadband light.</td>
<td>9/30/16</td>
<td></td>
</tr>
</tbody>
</table>

Widefield Detector Technology Milestones

<table>
<thead>
<tr>
<th>Milestone Description</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Produce, test, and analyze 2 candidate passivation techniques in banded arrays.</td>
<td>7/31/14</td>
<td>✔</td>
</tr>
<tr>
<td>2 Produce, test, and analyze 1 additional candidate passivation techniques in banded arrays.</td>
<td>12/30/14</td>
<td>✔</td>
</tr>
<tr>
<td>3 Produce, test, and analyze full arrays with operability > 95%.</td>
<td>9/15/15</td>
<td>✔</td>
</tr>
<tr>
<td>4 Produce, test, and analyze final selected recipe in full arrays demonstrating a yield > 20% with operability > 95%.</td>
<td>9/15/16</td>
<td></td>
</tr>
<tr>
<td>5 Complete environmental testing of one sensor chip assembly, as per NASA test standards.</td>
<td>12/1/16</td>
<td></td>
</tr>
</tbody>
</table>
Path Forward

- Industry study solicitation to be released.
- Developing KDP-A documentation and products per NPR 7120.5E (control plans, descope plan, design reference, Formulation Agreement, etc.)
- Proposals for WFIRST Science Team due October 15; selection around Dec 1.
- Science Investigation Team kick-off planned for the first week of February.
- Award of industry studies in early 2016.
- Prepared for the start of formulation (KDP-A) as early as January 2016.
- Acquisition Strategy Meeting (ASM) in spring; finalizes acquisition approach.
- Systems Requirements Review/Mission Design Review (SRR/MDR) to be held prior to end of Formulation Phase.
- At the conclusion of the Formulation Phase, KDP-B and transition to development.
FY16 President’s Budget Request

Outyears are notional planning from FY16 President’s budget request

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics*</td>
<td>$678</td>
<td>$685</td>
<td>$689</td>
<td>$707</td>
<td>$750</td>
<td>$986</td>
<td>$1,118</td>
</tr>
<tr>
<td>JWST</td>
<td>$658</td>
<td>$645</td>
<td>$620</td>
<td>$569</td>
<td>$535</td>
<td>$305</td>
<td>$198</td>
</tr>
</tbody>
</table>

- Continues preformulation of WFIRST-AFTA as the “Astrophysics Decadal Strategic Mission.”
- Grows Astrophysics Research and Analysis (including Astrophysics Data Analysis Program) from ~$80M/yr to ~$90M/yr in FY16.
- Supports completion of missions under development, including LPF/ST7, ASTRO-H, NICER, TESS, and Euclid.
- Provides full funding for SOFIA operations and places SOFIA into the 2016 Astrophysics Senior Review. (Subsequently SOFIA was deferred to the 2018 Senior Review.)
- Plans for the 2016 Astrophysics Senior Review.
- Plans for continued Hubble operations through FY20 providing overlap with JWST.
- Plans for mission concept studies and technology development (within the three Program SR&T budgets) leading up to the 2020 Decadal Survey.

* Excludes “SMD STEM Activities” in all years.
<table>
<thead>
<tr>
<th></th>
<th>FY15 Approp</th>
<th>FY16 Pres Request</th>
<th>FY16 House Budget</th>
<th>Delta House vs Request</th>
<th>FY16 Senate Budget</th>
<th>Delta Senate vs Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td></td>
<td></td>
<td>Appropriation passed full House</td>
<td></td>
<td>Appropriation sent from Committee to Senate</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>18,010.2</td>
<td>18,529.1</td>
<td>18,529.1</td>
<td>0</td>
<td>18,289.5</td>
<td>-239.6</td>
</tr>
<tr>
<td>SMD</td>
<td>5,244.7</td>
<td>5,288.6</td>
<td>5,237.5</td>
<td>-51.1</td>
<td>5,295.0</td>
<td>+6.4</td>
</tr>
<tr>
<td>JWST</td>
<td>645.4</td>
<td>620.0</td>
<td>620.0</td>
<td>0</td>
<td>620.0</td>
<td>+0</td>
</tr>
<tr>
<td>Astrophysics w/ SMD Education</td>
<td>726.8</td>
<td>709.1</td>
<td>735.6</td>
<td>+26.5</td>
<td>730.6</td>
<td>+41.5</td>
</tr>
<tr>
<td>Astrophysics w/out SMD Ed</td>
<td>684.8</td>
<td>689.1</td>
<td>730.6</td>
<td>+41.5</td>
<td>730.6</td>
<td>+41.5</td>
</tr>
<tr>
<td>WFIRST</td>
<td>50.0</td>
<td>14.0</td>
<td>49.8</td>
<td>+35.8</td>
<td>90.0</td>
<td>+76.0</td>
</tr>
<tr>
<td>Hubble</td>
<td>98.6</td>
<td>97.1</td>
<td>98.3</td>
<td>+1.2</td>
<td>98.3</td>
<td>+1.2</td>
</tr>
<tr>
<td>SOFIA</td>
<td>70.0</td>
<td>85.2</td>
<td>85.2</td>
<td>0</td>
<td>85.2</td>
<td>+0</td>
</tr>
<tr>
<td>Rest of Astrophysics</td>
<td>634.8</td>
<td>675.1</td>
<td>653.8</td>
<td>-21.3</td>
<td>653.8</td>
<td>-35.7</td>
</tr>
<tr>
<td>SMD Education</td>
<td>42.0</td>
<td>20.0</td>
<td>32.0</td>
<td>+12.0</td>
<td>42.0</td>
<td>+22.0</td>
</tr>
</tbody>
</table>
FY16 Congressional Appropriation Markups

<table>
<thead>
<tr>
<th>Astrophysics Project</th>
<th>House Language (paraphrased)</th>
<th>Senate Language (paraphrased)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Follow the Decadal Survey</td>
<td>Follow the Decadal Survey</td>
</tr>
<tr>
<td>JWST</td>
<td>Do not overrun</td>
<td>Do not overrun</td>
</tr>
<tr>
<td>WFIRST</td>
<td>Include coronagraph; accelerate exoplanet program</td>
<td>Accelerate formulation start, with goal of KDP-A by January 15, 2016</td>
</tr>
<tr>
<td>Hubble</td>
<td></td>
<td>Hubble is wonderful</td>
</tr>
<tr>
<td>SOFIA</td>
<td>Do not put SOFIA in 2016 Senior Review; do not terminate SOFIA</td>
<td>Any SOFIA participation in 2016 Senior Review is only for practice</td>
</tr>
<tr>
<td>Explorers</td>
<td></td>
<td>Increase AO frequency to at least every 3 years with goal of every 2 years</td>
</tr>
<tr>
<td>Kepler</td>
<td></td>
<td>Kepler has revolutionized the pace of planet finding</td>
</tr>
<tr>
<td>SMD Education</td>
<td>Reallocate funds among Divisions</td>
<td>APD should administer SMD-wide education activities</td>
</tr>
</tbody>
</table>
Implementing the 2010 Decadal Survey

• The 2010 Decadal Survey recommended a coordinated program of research, technology development, ground-based facilities, and space-based missions to address the most compelling science questions.

• The budget environment does not allow the recommendations of the 2010 Decadal Survey to be implemented as written.
 - Choices have been made.
 - NASA Astrophysics has kept the community informed of our progress through Town Halls, Implementation Plan Updates, and Newsletters.
 - NASA Astrophysics obtains frequent community input via advisory committees and community groups.

• NASA Astrophysics is addressing all of the recommendations in the 2010 Decadal Survey and substantial progress is being made.
 - The James Webb Space Telescope (JWST) remains on schedule and within budget for a launch in October 2018.
 - Preformulation for the Wide-Field Infrared Survey Telescope (WFIRST) using Astrophysics Focused Telescope Assets (AFTA) is well underway.
 - Explorer AOs are being issued every 2-3 years.
 - Highly leveraged partnerships with the European Space Agency (ESA) are advancing the science of LISA and IXO.
 - Investments in technology, suborbital investigations, core research, and other Decadal Survey priorities are yielding science in this decade and preparing for the next decade.

• The Mid-Term Review is underway.
Progress Toward Decadal Survey Priorities

The NASA FY15 Appropriation, the President’s FY16 Budget Request, and the notional out year budget planning guidance in the President’s FY16 Budget Request, support:

<table>
<thead>
<tr>
<th>Large-scale 1. WFIRST</th>
<th>Preformation and focused technology development for WFIRST-AFTA (a 2.4m version of WFIRST with a coronagraph) are underway to enable a new start. Budget line established for an Astrophysics Decadal Strategic Mission.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale 2. Augmentation to Explorer Program</td>
<td>Astrophysics Explorers planned budget increased to support cadence of four AOs per decade including SMEX AO in Fall 2014 and MIDEX AO in late 2016/early 2017.</td>
</tr>
<tr>
<td>Large-scale 3. LISA</td>
<td>Discussing partnership on ESA’s L3 gravitational wave observatory and participating in ESA-led assessments in 2014-2015. Strategic astrophysics technology (SAT) investments plus support of LISA Pathfinder.</td>
</tr>
<tr>
<td>Large-scale 4. IXO</td>
<td>Pursuing a partnership on ESA’s L2 Athena X-ray observatory; the Athena study phase, with U.S. participation, is underway. Strategic astrophysics technology (SAT) investments.</td>
</tr>
<tr>
<td>Medium-scale 2. Inflation Probe Technology Development Prog</td>
<td>Balloon-borne investigations plus strategic astrophysics technology (SAT) investments. Studying partnership on JAXA’s LiteBIRD.</td>
</tr>
<tr>
<td>Scale</td>
<td>Category</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Medium-scale</td>
<td>New Worlds Technology Development Program</td>
</tr>
<tr>
<td>Small-scale</td>
<td>Research Program Augmentations</td>
</tr>
<tr>
<td>Small-scale</td>
<td>Intermediate Technology development Augmentation</td>
</tr>
<tr>
<td>Small-scale</td>
<td>Future Ultraviolet-Visible Space Capability</td>
</tr>
<tr>
<td>Small-scale</td>
<td>SPICA (U.S. contribution to JAXA-led)</td>
</tr>
</tbody>
</table>
Response to Recommendations: Core Research

- Core R&A Funding includes
 - Astrophysics Research and Analysis (APRA): all years
 - Astrophysics Data Analysis Program (ADAP): all years
 - Astrophysics Theory Program (ATP): all years
 - Exoplanet Research Program (XRP), was Origins of Solar Systems (OSS): all years
 - Theoretical and Computational Astrophysics Networks (TCAN): FY14+
 - Nancy G. Roman Technology Fellowships (RTF): FY12+
 - Long Term Space Astrophysics (LTSA): through FY09, then into ADAP
 - Beyond Einstein Foundation Science (BEFS): through FY06, then into ATP
 - Does not include WFIRST Preparatory Science (WPS) or mission-funded theory

"15% cut" Post NWNH growth of 22% (FY11 to FY16)
Response to Recommendations: Core Research

Community Support
(competed, grant-like programs)

- Spitzer/Herschel/Fermi "bump"
- Guest Observer (GO) Programs (all missions)
- Einstein, Hubble, & Sagan Fellowships
- Research and Analysis (R&A) Funding (all programs)
- Strategic Astrophysics Technology (SAT) program
 JWST GO program begins in FY19
Proposal Selections Since January 2015

Status: November 2, 2015

<table>
<thead>
<tr>
<th>Proposal Due Date</th>
<th>Notify Date</th>
<th>Days past received</th>
<th>Number received</th>
<th>Number selected</th>
<th>% selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swift GI – Cycle 11</td>
<td>Sep 25, 2014</td>
<td>Jan 6, 2015</td>
<td>123</td>
<td>165</td>
<td>39</td>
</tr>
<tr>
<td>Kepler K2 GO – Cycle 1</td>
<td>Sep 23, 2014</td>
<td>Jan 16, 2015</td>
<td>115</td>
<td>92</td>
<td>36</td>
</tr>
<tr>
<td>Spitzer GO – Cycle 11</td>
<td>Oct 29, 2014</td>
<td>Dec 15, 2014</td>
<td>45</td>
<td>157</td>
<td>45</td>
</tr>
<tr>
<td>Roman Tech Stage 1</td>
<td>Nov 6, 2014</td>
<td>Feb 3, 2015</td>
<td>89</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>NuSTAR GO – Cycle 1</td>
<td>Nov 25, 2014</td>
<td>Apr 17, 2015</td>
<td>143</td>
<td>193</td>
<td>35</td>
</tr>
<tr>
<td>Fermi GI – Cycle 8</td>
<td>Jan 22, 2015</td>
<td>June 26, 2015</td>
<td>155</td>
<td>190</td>
<td>36</td>
</tr>
<tr>
<td>NESSF-15</td>
<td>Feb 1, 2015</td>
<td>June 2, 2015</td>
<td>121</td>
<td>134</td>
<td>10</td>
</tr>
<tr>
<td>Kepler K2 GO – Cycle 2</td>
<td>Feb 27, 2015</td>
<td>June 12, 2015</td>
<td>105</td>
<td>76</td>
<td>35</td>
</tr>
<tr>
<td>Chandra GO – Cycle 17</td>
<td>Mar 17, 2015</td>
<td>July 17, 2015</td>
<td>122</td>
<td>582</td>
<td>175</td>
</tr>
<tr>
<td>APRA (Basic Research)</td>
<td>Mar 20, 2015</td>
<td>Aug 12, 2015</td>
<td>145</td>
<td>149</td>
<td>40</td>
</tr>
<tr>
<td>SAT (Technology)</td>
<td>Mar 20, 2015</td>
<td>Aug 12, 2015</td>
<td>145</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>Hubble GO – Cycle 23</td>
<td>Apr 23, 2015</td>
<td>June 24, 2015</td>
<td>62</td>
<td>1114</td>
<td>261</td>
</tr>
<tr>
<td>EPDS (Doppler Spectr)</td>
<td>Apr 24, 2015</td>
<td>July 2, 2015</td>
<td>69</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ADAP (Data Analysis)</td>
<td>May 15, 2015</td>
<td>Sep 29, 2015</td>
<td>137</td>
<td>250</td>
<td>51</td>
</tr>
<tr>
<td>Exoplanet Research</td>
<td>May 22, 2015</td>
<td>Oct 15, 2015</td>
<td>146</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Kepler K2 GO – Cycle 3</td>
<td>Jul 1, 2015</td>
<td>Oct 14, 2015</td>
<td>105</td>
<td>72</td>
<td>32</td>
</tr>
<tr>
<td>SOFIA GI – Cycle 4</td>
<td>Jul 10, 2015</td>
<td>Oct 22, 2015</td>
<td>104</td>
<td>155</td>
<td>82</td>
</tr>
<tr>
<td>Spitzer GO – Cycle 12</td>
<td>Sep 11, 2015</td>
<td></td>
<td>52</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>SOFIA 3rd Gen Instrum</td>
<td>Oct 7, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100% of 2015 selections announced within 155 days

R&A Selection Rate: 23%

GO Selection Rate: 28%
ASTROPHYSICS

Decadal Survey Missions

1972
Decadal Survey
Hubble

1982
Decadal Survey
Chandra

1991
Decadal Survey
Spitzer, SOFIA

2001
Decadal Survey
JWST

2010
Decadal Survey
WFIRST
Assumes (1) President’s FY16 budget request and notional runout through FY20, (2) flat funding for Astrophysics for FY21 through FY35, (3) completion of WFIRST-AFTA and other missions planned for new starts in FY16-FY20.
Preparing for the 2020 Decadal Survey
Large Mission Concepts

• Study 3-4 large mission concepts as candidate prioritized large missions
 - Science case
 - Technology assessment
 - Design reference mission with strawman payload
 - Cost assessment

• Charge to the PAGS (January 2015)
 - “I am charging the Astrophysics PAGs to solicit community input for the purpose of commenting on the small set [of large mission concepts to study], including adding or subtracting large mission concepts.”

• NASA Plan for Community Input
 - 2015: PAGs gather community input on selecting concepts for study
 - 2016: Appoint STDT and Center study office, STDT assesses technology
 - 2017: Fund technology development through SAT, STDT develops DRM
 - 2018: STDT submits DRM for cost assessment
 - 2019: STDT issues report and provides input to Decadal Survey
October 10-11, JPL Open House with Exoplanet Theme
October 19, NASM What’s New in Aerospace Forum: "Exploring Alien Atmospheres."
October 20, Congressional Staffers Lunch and Learn: "The Search for Planets, Habitability, Life in Our Galaxy."
October 20, NASM Exoplanets 20/20–Celebrating 20 Years of Exoplanet Exploration, Imagining the Next 20 Years
October 20, Carnegie Capital Science, "Hunting Planets: Celebrating 20 Years of Exoplanets."
October 22, Reditt “Ask Me Anything” on Exoplanets
October 22-23, Thursday-Friday, Astrophysics Subcommittee Meeting at GSFC
2016 Senior Review (SR) Plans

<table>
<thead>
<tr>
<th>Mission</th>
<th>LRD</th>
<th>EOPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubble</td>
<td>1990</td>
<td>Delta SR; Hubble Panel</td>
</tr>
<tr>
<td>Chandra</td>
<td>1999</td>
<td>Delta SR; Chandra Panel</td>
</tr>
<tr>
<td>XMM (ESA)</td>
<td>1999</td>
<td>Standard SR; Main Panel</td>
</tr>
<tr>
<td>Spitzer</td>
<td>2003</td>
<td>Standard SR; Main Panel</td>
</tr>
<tr>
<td>Swift</td>
<td>2004</td>
<td>Standard SR; Main Panel</td>
</tr>
<tr>
<td>Suzaku (JAXA)</td>
<td>2005</td>
<td>No review; EOM plan approved</td>
</tr>
<tr>
<td>Fermi</td>
<td>2008</td>
<td>2013 Standard SR; Main Panel</td>
</tr>
<tr>
<td>Kepler/K2</td>
<td>2009</td>
<td>2013 Standard SR; Main Panel</td>
</tr>
<tr>
<td>NuSTAR</td>
<td>2012</td>
<td>2014 Standard SR; Main Panel</td>
</tr>
<tr>
<td>SOFIA</td>
<td>2014</td>
<td>2019 Review NET 2018</td>
</tr>
<tr>
<td>LISA Pathfinder (ESA)</td>
<td>2015</td>
<td>2016 Out of cycle review, if needed</td>
</tr>
<tr>
<td>ASTRO-H (JAXA)</td>
<td>2016</td>
<td>2019 Review NET 2018</td>
</tr>
<tr>
<td>NICER</td>
<td>2016</td>
<td>2018 Review NET 2018</td>
</tr>
<tr>
<td>TESS</td>
<td>2017</td>
<td>2019 Review NET 2018</td>
</tr>
</tbody>
</table>
SOFIA
Stratospheric Observatory for Infrared Astronomy

CURRENT STATUS:
- Observatory entered full operations in May 2014
- Program Management transition to NASA-Ames Research Center completed on October 1, 2015
- Observing status:
 - Cycle 3 in progress since February 2015
 - Cycle 4 to begin in February 2016
 - Completed Southern Hemisphere deployment with 4 science instruments
- Second generation instruments:
 - Commissioned upGREAT, multi-pixel heterodyne spectrometer (German instrument)
 - Testing/integrating HAWC+, far infrared imager & polarimeter; 2016 commissioning (U.S. instrument)
- Third-generation instrument to be selected in 2016
- Implemented science community feedback and IG recommendations for improved science productivity
 - Increased support for guest investigators
 - Increased capacity to deploy multiple instruments
 - Streamlined maintenance processes to increase observatory availability
 - Increased support for future science instrumentation
- 722 hours of science data from completed Cycles (Early Science through Cycle 2) has led, so far, to:
 - 52 peer-reviewed science papers
 - On average, one paper per 1.5 flights (so far)
 - Publications in 2 high-impact journals (*Nature* and *Science*)
 - Occultation data (Cycle 3) synergetic with New Horizons

- **World’s Largest Airborne Observatory**
 - 2.5-meter telescope
 - 80/20 Partnership between NASA and the German Aerospace Center (DLR)
 - Science Center and Program Management at NASA-Ames Research Center
 - Science Flight Operations at NASA-Armstrong Flight Research Center
 - Four US and Two German science instruments commissioned
 - Provide imaging, spectroscopy and photometry ranging from visible to far infrared
 - Advanced science instruments under development for future operation

- **CURRENT STATUS:**
 - Observatory entered full operations in May 2014
 - Program Management transition to NASA-Ames Research Center completed on October 1, 2015
 - Observing status:
 - Cycle 3 in progress since February 2015
 - Cycle 4 to begin in February 2016
 - Completed Southern Hemisphere deployment with 4 science instruments
 - Second generation instruments:
 - Commissioned upGREAT, multi-pixel heterodyne spectrometer (German instrument)
 - Testing/integrating HAWC+, far infrared imager & polarimeter; 2016 commissioning (U.S. instrument)
 - Third-generation instrument to be selected in 2016
 - Implemented science community feedback and IG recommendations for improved science productivity
 - Increased support for guest investigators
 - Increased capacity to deploy multiple instruments
 - Streamlined maintenance processes to increase observatory availability
 - Increased support for future science instrumentation
 - 722 hours of science data from completed Cycles (Early Science through Cycle 2) has led, so far, to:
 - 52 peer-reviewed science papers
 - On average, one paper per 1.5 flights (so far)
 - Publications in 2 high-impact journals (*Nature* and *Science*)
 - Occultation data (Cycle 3) synergetic with New Horizons
Kepler
Kepler Space Telescope

CURRENT STATUS:

- NASA’s first space mission dedicated to the search for extrasolar planets, or exoplanets
- PI: W. Borucki, NASA Ames Research Center
- Launch Date: March 6, 2009
- Payload: 0.95-meter diameter telescope designed to measure the tiny dimming that occurs when an orbiting planet passes in front of (‘transits’) a star
- Scientific objectives:
 - conduct census of exoplanet systems
 - explore the structure and diversity of extrasolar planetary systems
 - determine the frequency of habitable, Earth-sized planets in our galaxy

- Kepler “K2” observation method was approved for operations through FY2016 after completion of the 2014 Senior Review.
 - Kepler is conducting observations along the ecliptic, changing its orientation four times per year.
 - The seventh 75-day Campaign started October 3.
 - December 18, 2014: First confirmed planet discovery using K2 observation method

- From 2009-13, Kepler continuously monitored 100 sq. deg. field in constellations of Cygnus and Lyra for 4+ years.
 - These observations ended after failure of 2nd reaction wheel.

- Analysis of first 4 years of Kepler data has revealed:
 - Approximately 4696 exoplanet candidates
 - Approximately 1033 candidates confirmed as planets to date
 - Almost 300 exoplanets (confirmed and candidates) discovered in their star’s “habitable zone”.

- Analysis of the full (4+ year) Kepler data set ongoing.
Response to Recommendations: Explorers

- Explorer budget augmented to support 4 AOs per decade
 - 2 SMEX AOs w/ PI-managed cost cap ~$125M
 - 2 MIDEX AOs w/ PI-managed cost cap ~$200M (TBR)
 - 1 MO per AO w/ PI-managed cost cap ~$65M

- Astrophysics Explorers budget
 - FY05-FY14 actual, FY15 Op Plan, FY16-FY20 proposed
 - Includes all Astrophysics Explorers missions for all phases (development, operations), funding for future selections, cost of program (program management, cost of AO evaluations and multiple Phase A awards).
 - Does not include funding for mission extensions beyond FY16 (that funding is in the Senior Review budget line).
CREAM
Cosmic Ray Energetics and Mass

CURRENT STATUS:

• Suborbital class research project for flight operations on the International Space Station (ISS) Japanese Exposed Facility (JEM-EF).

• Major partners:
 - PI and science lead: Univ. of MD
 - Project Management: NASA WFF
 - Other science collaborators: Sungkyunkwan National Univ. (South Korea), Kyungpock National Univ. (South Korea), Northern Kentucky Univ., Penn State Univ.

• Tentative launch date: August 2016 on SpaceX-11 to the ISS.

• KDP-C: April 2013
• KDP-D: September 2014
• Delivered to KSC: August 2015

PI: Eun-Suk Seo.
Mission: Cosmic ray particle detector astrophysics.
Science goal: Measure cosmic ray particle energy spectra from \(10^{12}\) to \(10^{15}\) eV over elemental range of protons to iron.
Instruments: Tungsten/scintillating fiber Calorimeter, Silicon charge detector, Top and Bottom counting detectors, Boronated Scintillator detector.
Operations: 2016 launch with 1 year minimum required, 3 years desired.
LPF - Status

- 2012: ST7 delivered to ESA, integrated later in the year
- ESA thrusters changed to GAIA cold gas thrusters
- Final ground testing met or exceeded all requirements.
- September 3: spacecraft, propulsion module and launch I&T complete, ready for shipping
- Numerous operations exercises have been carried out.
- October 8: Flown to Kourou.
- December 1, 11:15 pm EST: scheduled launch on Vega 6
- L+74 d: LTP operations start
- L+186 d: ST7 operations start
- L+288 d: Nominal mission ends.
- Extended mission under consideration.
ST-7/LISA Pathfinder
ST-7/Disturbance Reduction System (DRS)

CURRENT STATUS:
• LISA Pathfinder shipped to Guiana Space Port, Kourou, French Guiana on October 8
• Spacecraft final closeouts are ongoing
• Launch December 2, 2015 (UT)
• Extended mission being discussed

• ESA Mission with NASA Collaborating
• Project Category: 3 Risk Class: C
• DRS flies on the ESA LISA Pathfinder spacecraft
• Sun-Earth L1 halo orbit
• Drag-free satellite to offset solar pressure
• Payload delivery: July 2009 – COMPLETE
• Launch date: December 2, 2015
• LPF prime mission: 7 months
• Data Analysis: 12 months
ASTRO-H
Soft X-ray Spectrometer and Soft X-ray Telescope Mirrors

CURRENT STATUS
The U.S. is providing instrument contributions to the JAXA ASTRO-H mission.
- Soft X-ray telescope mirrors (SXT-S and SXT-I) – Both delivered.
- X-ray Calorimeter Spectrometer Insert (CSI), including Adiabatic De-magnitization Refrigerator (ADR) and ADR Controller
- Aperture Assembly
- X-ray Electronics Box (X-box)
- High Temperature Superconducting Leads

- All U.S. hardware has been integrated onto the spacecraft.
- Successfully completed spacecraft level environmental testing

UPCOMING EVENTS:
- Early November - Final spacecraft comprehensive performance test
- Late November –shipment to Tanegashima launch site
- Late NET November 2015 (TBC) – Launch
- Late Spring 2016 (TBC) – Cycle 1 GO call

- Explorer Mission of Opportunity
- PI: R. Kelley, Goddard Space Flight Center
- Launch Date: NET Jan 2016 on JAXA H-IIA
- Science Objectives: Study the physics of cosmic sources via high-resolution X-ray spectroscopy. The SXS will enable a wide range of physical measurements of sources ranging from stellar coronae to clusters of galaxies.
- Operations: Prime Mission is 3 years
CURRENT STATUS:

- All subsystems/sub-assemblies have completed fabrication and environmental testing
- The NICER project has now started final payload integration

UPCOMING EVENTS:

- Dec 10-11: Pre-environmental Review
- Jan 21 2016: KDP-D
- February 2016: Start of payload environmental testing
- August 2016 (TBC): Launch

Explorer Mission of Opportunity

PI: Keith Gendreau, GSFC

Launch: August 2016 on Space-X Falcon 9

Science Objectives: Perform high-time-resolution and spectroscopic observations of neutron stars in the 2-12 keV energy range to study the physics of ultra-dense matter in the core of neutron stars.

Instrument: X-ray Timing Instrument uses X-ray concentrators and detectors to detect X-ray photons and return energy and time of arrival.

Platform: Located externally on the ISS, ExPRESS Logistics Carrier 2, Starboard 3 site

Operations: Operated on a non-interference basis for 18 months

SEXTANT for Pulsar navigation demo funded by NASA’s Space Technology Mission Directorate
Standard Explorer (EX) Mission
PI: G. Ricker (MIT)
Mission: All-Sky photometric exoplanet mapping mission.
Science goal: Search for transiting exoplanets around the nearby, bright stars.
Instruments: Four wide field of view (24x24 degrees) CCD cameras with overlapping field of view operating in the Visible-IR spectrum (0.6-1 micron).
Operations: NLT June 2018 launch with a 3-year prime mission including 2 years of spacecraft operations and an additional 1 year ground-based observations and analysis.

TESS
Transiting Exoplanet Survey Satellite

CURRENT STATUS:
- Downselected April 2013.
- Major partners:
 - PI and science lead: MIT
 - Project management: NASA GSFC
 - Instrument: Lincoln Laboratory
 - Spacecraft: Orbital Science Corp
- Tentative launch readiness date NLT June 2018.
- High-Earth elliptical orbit (17 x 58.7 Earth radii).
- Development progressing on plan.
 - Preliminary Design Review (PDR) successfully completed Sept 9-12, 2014.
 - Confirmation Review, for approval to enter implementation phase, successfully completed October 31, 2014.
 - CDR held August 4-7, 2015
 - Delta CDR planned for ~December 2015
Euclid
A visible and near-infrared telescope to explore cosmic evolution

CURRENT STATUS:

• Currently in implementation phase.
• ~50 U.S. scientists are members of the Euclid Science Team that will analyze the data, and make maps of the sky.
• The qualification detectors from the detector vendor are currently being tested at GSFC’s Detector Characterization Lab.
• NASA has all contracts in place at the detector vendor, with the last one expected to be in place in November 2015.
• End of detector engineering phase was delayed by ~23 months, delivery of NASA-provided sensor systems will slip by same amount.
• The Euclid Mission PDR was held October 20, 2015.
• NASA rebaseline will be in January 2016 (TBC).

• ESA Cosmic Vision 2015-2025 Mission, M-Class with NASA participation.
• 1.2-m mirror, visible & near-IR images, spectra
• Launch Date: December 2020
• Science Objectives:
 - Euclid will look back 10 billion years into cosmic history.
 - Probe the history of cosmic expansion (influenced by dark energy and dark matter) and how gravity pulls galaxies together to form the largest structures.
 - The shapes of distant galaxies appear distorted because the gravity of dark matter bends their light (gravitational lensing). Measuring this distortion tells us how the largest structures were built up over cosmic time.
 - Measuring how strongly galaxies are clumped together tells us how gravity influences their motions, and how dark energy has affected the cosmic expansion.
Recent Activities

- Completed design report with SDT – March ‘15.
- Developed life cycle mission cost (combination of parametric, grassroots, and analogy)
- Validated by independent cost assessment (Aerospace CATE).
- MCR design cycle progressing to completion in December.
- Milestones for Coronagraph and IR detectors continue to make excellent progress.
 - Technology Assessment Committee provides for external review of technology milestones.
- Risk management process being actively utilized.
- Industry RFI for potential participation in WFIRST development recently conducted; study solicitation this fall.
- Solicitation for WFIRST science team released July 17th.

<table>
<thead>
<tr>
<th>NASA Cost Estimate</th>
<th>FY10$B</th>
<th>FY15$B</th>
<th>RY$B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Cost w/coronagraph</td>
<td>1.8-2.1</td>
<td>2.0-2.3</td>
<td>2.5-2.8</td>
</tr>
<tr>
<td>Cost of adding coronagraph</td>
<td>0.32</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>NWNH Mission Estimate*</td>
<td>1.6</td>
<td>1.8</td>
<td>-</td>
</tr>
</tbody>
</table>

* NWNH cost estimate did not include the GI/GO program
WFIRST Detector Technology
Milestone Progress

Table below shows range of results for the first 4 full arrays; all are within MS#3 specifications.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Median Dark Current (e/s)</th>
<th>CDS Noise (electrons)</th>
<th>QE (%) (av. 800-2350nm)</th>
<th>Crosstalk (%) (nearest neighbor)</th>
<th>Pixels with Nominal Photo Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS3 req't</td>
<td><0.1</td>
<td><20</td>
<td>>60</td>
<td><3.0</td>
<td>>95</td>
</tr>
<tr>
<td>Range</td>
<td>0.001-0.007</td>
<td>14.5-16.6</td>
<td>89-94</td>
<td>1.8%-2%</td>
<td>96-99%</td>
</tr>
</tbody>
</table>

Test timeline uses full arrays to allow early environmental testing for TRL-6 over 2 years before mission PDR.
Over the past two years, increased funding has enabled significant progress in technology maturation as well as additional fidelity in the design reference mission.

WFIRST with the 2.4-m telescope and coronagraph provides an exciting science program, superior to that recommended by NWNH and also advances exoplanet imaging technology (the highest ranked medium-class NWNH recommendation).

Great opportunity for astronomy and astrophysics discoveries. Broad community support for WFIRST.

Key development areas are anchored in a decade of investments in JPL’s HCIT and GSFC’s DCL.

Great progress made in pre-formulation, ready for KDP-A and launch in mid-2020s.
Athena
Advanced Telescope for High Energy Astrophysics

CURRENT STATUS:

• Selected as 2nd Large mission in ESA Cosmic Visions Program
• Currently in 2 year Study Phase
• NASA and US community involved in Study Phase via membership on ESA-chartered Athena Science Study Team and Science Working Groups
• NASA budgeting for a $100M-$150M hardware contribution, plus a US GO program and a U.S. data center
• NASA will provide the sensor array for the X-ray Integral Field Unit (calorimeter)
• NASA and ESA are discussing other possible NASA contributions, such as:
 - A contribution to the Wide Field Imager
 - Use of the NASA XRCF for Calibration
 - Contribution to science data center (U.S. node)
• NASA continues to invest in Athena technologies via SAT and directed investigations.

• Second ESA Cosmic Vision Large mission
 - L-class with NASA/JAXA participation
 - Decadal Survey recommendation
 - Large X-ray mirror, X-IFU and WFI instruments

• Launch Date: 2028

• Breakthrough Technologies:
 - High Throughput, Wide FOV, High spectral resolution X-ray Astronomy
 - 10x Chandra area, 100x improved non-dispersive spectral resolution, 5x FOV.

• Science Objectives: The Hot and Energetic Universe: How does ordinary matter assemble into the large scale structures that we see today? How do black holes grow and shape the Universe?